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1 Executive summary
The deliverable D2.1 "Experiments and Initial Specifications" aims to present in detail the use cases
that will be used to validate the outcomes of the CloudButton project. Specifically, this deliverable
contains a description of each of the different experiments and an initial assessment on how these
workloads can transition to serverless functions. The document also presents an initial specification
of the CloudButton architecture that describes how the various components and building blocks fit
together and suitably communicate and interact.

The document is structured as follows. Section 2 provides a brief introduction to the deliverable
whereas sections 3-5 are devoted to the description of the use cases. Section 6 offers an overall project
vision and reviews the state of the art in Serverless Data Analytics. The general objectives of the
project are summarized in section 7 while the initial specifications of the architecture are described
in section 8. Finally, section 9 contains the conclusions of this document.

Page 3 of 52
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2 Introduction
The main goal of the CloudButton project is to create a Serverless Data Analytics Platform that aims
to “democratize big data” by overly simplifying the overall life cycle and programming model thanks
to serverless technologies. The idea is to tap into stateless functions to enable radically-simpler, more
user-friendly data processing systems. The CloudButton platform will seamlessly integrate a Server-
less Compute Engine, a Mutable Shared Data Middleware, and new Serverless Cloud Programming
Abstractions on top.

Although speed of deployment and ease of use of a serverless computing approach is a key en-
abler for increased productivity, the new radical approach behind CloudButton must be accompanied
by a similar performance, if not better, in comparison to state-of-the-art analysis methods.

Therefore, validating a project like CloudButton and demonstrating its impact requires of a con-
sistent evaluation with strong uses cases and benchmarks. To this end, we target three settings with
large data volumes: genomics, metabolomics and geospatial data (LiDAR, satellite). For each of these
three domains, we present three different experiments that cover a highly diverse array of analytics:
from data-intensive Spark tasks, machine learning methods, genomics pipelines to pixel-based clas-
sifiers. With such a diversity of computations, our aim is to ascertain the promising potential of
serverless computing for big data analytics.

Together with the description of the use cases, this document also provides the general vision of
the project and the initial specifications of the platform architecture. By comparing our project vision
with the state of the art, we identify the tradeoffs involved in the design of such a platform (disag-
gregation between computing and storage, isolation, and simplified scheduling). We also realize that
most research works in Serverless Data Analytics combine serverless components with auxiliary ded-
icated services, a hybrid approach we identify as ServerMix. We explicitly advocate for ServerMix
model as a good fit for Data Analytics applications.

Page 4 of 52
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3 Metabolomics use case

3.1 Experiments description

3.1.1 Experiments

The key experiment in the metabolomics use case is the metabolite annotation for imaging mass
spectrometry according to (Palmer et al, Nature Methods 2017). Imaging mass spectrometry is a
technique for detecting metabolites, lipids, and other small molecules in tissue sections from animal
models and human samples. Metabolite annotation is finding signals corresponding to molecules
in the data, normally of size of 1-100 GB per tissue section. Currently EMBL performs annotation
and providing free services to more than 100 users across the world by using an Apache Spark im-
plementation developed in the EU Horizon2020 project METASPACE1. The aim of this CloudButton
experiment is to develop a serverless alternative to the Apache Spark implementation with the aim
to enable interactive analysis, critically increase scalability, avoid current delays due to deployment.
At the same time, we would like to simplify the current development process as well as achieve
reduction of development and computing costs. This will not only provide a novel cost-effective im-
plementation in a critical field of metabolomics but also will enable novel applications in particular
by making possible interactive analysis.

Figure 1 highlights the state of art put forward by METASPACE for spatial metabolomics.

Figure 1: The state of the art of the METASPACE engine for spatial metabolomics: the principle of
the engine and the molecular annotation, the current serverful instrastructure of our Apache Spark
implementation2, and the usage of the engine.

1https://metaspace2020.eu
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Table 1: Metabolomics use case datasets

Dataset Owner Access Volume Growth Format

ds1 University of
Notre Dame

Public 35MiB N/A imzML

ds2 EMBL Public 37MiB N/A imzML

ds3 EMBL Public 571MiB N/A imzML

ds4 EMBL Public 1285MiB N/A imzML

ds5 EMBL Public 104MiB N/A imzML

ds6 EMBL Public 152MiB N/A imzML

ds7 EMBL Public 256MiB N/A imzML

Please note that although the provided datasets are of fixed sizes, the number of datasets in the
whole METASPACE is growing approximately twice a year. As of July 2019, METASPACE includes
over 4800 datasets similar to those included in Table 1. Approximately 10 datasets are being submit-
ted and processed every day.

3.1.2 Data

In CloudButton, for the metabolomics use-case we will use preselected datasets from METASPACE.
Currently METASPACE hosts more than 4500 datasets, of them 80% public data, with our team
(EMBL) being the largest contributor (18%). For CloudButton, we have pre-selected datasets (and
will keep providing new ones throughout the project) that satisfy the requirements of the partners
(e.g., no human data), can be shared within the consortium (either public data from us or other sub-
mitters or private data from our team), and are representative in terms of size, noise, richness, and
other parameters. The datasets are provided in the imzML format, the main open format in the field
of imaging mass spectrometry 3. For parsing the data, we provide a Python library4.

3.2 Pipelines

An essential part of work in this reporting period was to formulate a Benchmarking Roadmap that
includes the criteria for assessment of the future serverless implementation. The Benchmarking
Roadmap includes the following aims:

• Match or exceed the performance of current METASPACE (Apache Spark) for typical work-
loads

• Match or exceed the dataset size limits that METASPACE can handle

• Match or exceed the molecular database limits that METASPACE can handle

• Achieve cost less than or the same amount as METASPACE

• Significantly shorten development time for infrastructure maintenance compared to METAS-
PACE

• Efficiently run the pipeline against small workloads (e.g. ds1, ds2)

We have formulated specific scenarios for performing work in the Metabolomics Use-Case (see
Figure 2).

2https://github.com/metaspace2020
3https://ms-imaging.org/wp/imzml/
4https://github.com/alexandrovteam/pyimzML
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Figure 2: Diagram illustrating the formulated specific use cases for the serverless implementation of
the molecular annotation in the Metabolomics Use Case as well as the benchmarking metrics specific
for each use case. Please note that although all benchmarking metrics will be applied in all three
Specific Use Cases, the current figure highlights those Specific benchmarking which are of particular
importance for a regular metabolomics user.

3.2.1 Metabolomics Specific Use Case 1: General annotation

This specific use case covers the typical use of METASPACE for annotation (i.e. finding molecules)
of a typical-size spatial metabolomics dataset (e.g. ds3) in non-interactive manner. This is the most
common use case in METASPACE. In addition to the cluster execution, we consider also the execution
of the engine on lower-specs computers or laptops that is hardly possible with the current serverful
implementation.

The key metrics for benchmarking are: 1) total processing time with the goal to achieve a shorter
processing time than when using the serverful METASPACE, 2) latency for retrieving all images of
target ions with the aim to achieve similar-or-lower time than when using the current METASPACE
Python client, 3) peak memory usage on client with the goal to be capable of running on low-spec
PC with 8GB ram, 4) cloud provider cost with the goal to achieve similar price or cheaper than the
serverful METASPACE (including or excluding cluster start time), 5) developer time with the goal
to achieve less annual time required to manage cloud infrastructure than when using the serverful
METASPACE.

3.2.2 Metabolomics Specific Use Case 2: Interactive annotation

This specific use case covers an interactive scenario of a scientist working interactively with a dataset
of small-to-medium size (e.g. ds1, ds2, ds3). In this use case, the scientist wants to annotate one or a
few molecules which were not included in the original molecular database. This use case is currently
not implemented in METASPACE due to the long deployment time. In this use case some computa-
tional parts are skipped (e.g. FDR calculation) which are either not required or can be sacrificed to
provide near-to-instantaneous results that is essential for the interactive analysis.

The main metrics for benchmarking are 1) the total processing time with the goal to perform
calculations at least within 60 seconds and 2) the total cost with the goal to have it signficantly cheaper

Page 7 of 52
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compared to a full annotation (against a full molecular database).

3.2.3 Metabolomics Specific Use Case 3: Large dataset annotation

This is a use case to test the performance but also corner cases while annotating a large dataset of the
size of 1.8 GB after pre-processing (ds4).

The main metric for benchmarking for this specific use case is the performance or the total pro-
cessing time including the cluster starting time.

3.3 Transition to serverless

The metabolite annotation as it is performed in METASPACE (current Apache Spark implementation)
can be highly parallelized and suits perfectly for a serverless implementation. Specifically, annota-
tion of a dataset is performed against a database of molecules (a large list of 10K-100K molecules).
Annotation against each molecule can be performed independently that makes this task embarrass-
ingly parallelizable. Moreover, annotation against each molecule by itself involves search against
many possible transformations of a molecule into possible ions, each ion being produced in a combi-
natorial manner (several possible ion adducts times several potential neutral losses) and on its own
generating 4 signals. This provides another level of potential for parallelization. The results can be
obtained in an independent manner for each molecule and only later needs to be merged to pinpoint
potential ambiguity on the level of molecular isomers or isobars.

The transition to the serverless will not only enhance our ability annotating datasets again the
current databases, but also will open the search space towards bigger databases (PubChem, including
millions of molecules) as well as potential various chemical modifications of the molecules that are
know to potentially happening either in the cells or during the ionization while acquiring the data.
This will allow us to push the boundaries of the annotation and get a deeper insight into the currently
not annotated "dark matter" that currently represents 95% or more of the data.

Page 8 of 52



H2020 825184 RIA
24/07/2019 CloudButton

4 Genomics use case

4.1 Introduction

4.1.1 Current situation

The Pirbright Institute researches and surveils virus diseases of farm animals, and viruses spread-
ing from animals to humans. It receives strategic funding from the Biotechnology and Biological
Sciences Research Council (BBSRC), and works to enhance capability to contain, control and elim-
inate economically and medically important diseases through innovative fundamental and applied
bioscience. Although main targets are viruses relevant to livestock, the model adopted is that of
One Health – all stages of the viral life cycle and their direct and indirect effect on all hosts and
eco-systems are taken into account as a whole. Hence possible interaction with vectors, different
reservoirs, possible zoonotic spillage of infection from animal to human hosts, and consequences on
agriculture and human development, are all subjects of study. Pirbright acts as Reference Laboratory
for several animal diseases, notably Foot-and-Mouth Disease.

Pirbright is equipped with a world-class National Capability high-containment lab, where a num-
ber of pathogens falling under SAPO4/ACDP3 classification can be studied. An unusual feature is
that several high-throughput sequencers, based on different Illumina technologies, are hosted within
containment; this allows scientists to study virus-host interactions and cell response for biological
systems involving dangerous pathogens, since biosafety regulations make it difficult for samples to
be sent away to external sequencing providers.

4.1.2 Motivation for serverless

Pirbright has recently adopted a centralised model for providing bioinformatics support. It is based
on a HPC cluster with 1000 CPUs and 0.5 PB of storage, which is adequate to support the existing
user base at the Institute (more than 30 active users at the moment). However bioinformatics is
rapidly becoming a central activity, with more and more sequencing protocols and applications being
continuously added to the core set of tools that researchers rely upon. Typical applications involving
sequencing experiments at Pirbright include: phylogenetic and phylogenomics of viral evolution;
exploration of virus-host interaction based on RNA-sequencing and other protocols; immunological
studies that focus on the reaction of the host to the virus, which includes the characterisation of the
genetic make-up of livestock species.

While local computing power and storage are usually sufficient, some use cases would require
a different approach and would greatly benefit from serverless platforms. It is sometimes necessary
– in particular when analysing the genetics of livestock viral hosts, or when exploring the system
biology of how a host cell reacts to external stimuli – to consider and reprocess large datasets not
produced at the Institute in order to compare them with locally available data. Such analyses would
be performed on-the-fly for exploratory purposes, with no intention of keeping the results stored
locally for a long time. This consideration, and the transient need for large computational resources
that are not available locally, would be an ideal use case for the technology explored within Cloud-
Button.

As a first step, the Pirbright pipeline for the analysis of RNA-sequencing data will be ported to
serverless technology. Subsequently, Pirbright will provide data coming from its own sequencing
machines in containment. This data will be compared with a large number of publicly available
similar RNA-sequencing datasets obtained elsewhere. Pirbright will then test the serverless version
of the pipeline produced within CloudButton on both its own data and the publicly available data,
comparing the results with the ones obtained with the version of the pipeline installed on the local
HPC cluster. This comparison, and the ability to externally process datasets that cannot be stored
locally, will hopefully demonstrate that the infrastructure provided by CloudButton represents an
ideal way of solving analysis bottlenecks.

Page 9 of 52
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4.2 Description of datasets

In order to be able to assess such goals we will perform re-analysis of a number of publicly available
datasets in the domains of:

1. Livestock genomics Typically they are functional studies, focused on understanding if and how
the cells of species interesting for farming (cattle, pig, goat, sheep, horse, etc.) work differently
from those of model organisms, and how they respond to stress and infection.

2. Virus-host interaction. That is obviously a core topic for Pirbright and livestock industry, in
that understanding the mechanisms by which some cells are susceptible to a given virus and
how others are not is essential to decipher and control animal diseases.

3. Immunologic studies involving cancer cells. Several diseases relevant to animals centre on
viral infections of components of the immune system, which eventually turn into tumours.
Comparing with similar human diseases can shed light on common mechanisms and possible
solutions for both animals and humans.

The results obtained from these datasets will then be compared to the ones derived from similar
datasets produced internally – Pirbright routinely conducts sequencing experiments in each of the
three domains just described. Most of the internal datasets are confidential and cannot in general be
shared with the consortium or publicly, but the comparison will provide useful information on the
potential offered by the ability to process virtually unlimited amounts of data on serverless platforms.

More details on the datasets selected for each of the three experiments follow.

4.2.1 FAANG (Functional Annotation of ANimal Genomes) datasets

These are publicly accessible datasets [1] produced by the FAANG (Functional Annotation of ANimal
Genomes) consortium [2]. They explore genomic and functional information on livestock species
(see [3]). Each file considered for those datasets is typically in the range of 10-30GB uncompressed,
and during the last 6 months several thousand datasets have been added. The datasets Pirbright will
re-process will be a superset of the list in Table 2.

We will reprocess them through our in-house bioinformatics pipeline (an evolution of the RNA-
sequencing analysis pipeline used in [4]) re-implemented on the top of the CloudButton toolkit, and
compare them to the results obtained by running the pipeline locally on the Pirbright HPC cluster. In
parallel we will process similar data sequenced at Pirbright, both locally on the Pirbright HPC cluster
and on the CloudButton testbed.

4.2.2 Virus-host interaction from ENA

These are publicly available datasets (from [5]) produced by a variety of sources. They explore several
aspects of virus-host interaction (genome evolution, functional changes, technical/protocol-related).
Each file considered for those datasets is typically in the range of a few GB uncompressed. The
datasets Pirbright will re-process will be a superset of the ones in Table 3.

We will reprocess them through our in-house bioinformatics pipeline (an evolution of the RNA-
sequencing analysis pipeline used in [4]) re-implemented on the top of the CloudButton toolkit, and
compare them to the results obtained by running the pipeline locally on the Pirbright HPC cluster. In
parallel we will process similar data sequenced at Pirbright, both locally on the Pirbright HPC cluster
and on the CloudButton testbed.

4.2.3 Immune system cancers from ICGC

These are non-public datasets generated by, or donated to, the International Cancer Genome Consor-
tium [6] that can be obtained by PIs upon nominal request [7]. Each file considered for those datasets
is typically in the range of 10-30GB uncompressed. In this case Pirbright will re-process 100 whole-
genome sequencing samples from patients with blood cancers (such as Acute Myeloid Leukemia and
Chronic Lymphocytic Leukemia) in order to call genomic variants.

Page 10 of 52
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Table 2: FAANG datasets

Accession Title Species Files

PRJEB26787 FAANG transcriptome analysis of the horse Equus caballus 208

PRJEB19268 FAANG data from three boars Sus scrofa 34

PRJEB24166 Cattle transcriptome of macrophages Bos taurus 72

PRJEB28219 Bovine small and micro RNA expression atlas Bos taurus 136

PRJEB19199 RNA sequencing of tissues and cell types from Texel
& Scottish Blackface sheep for transcriptome
annotation and expression analysis.

Ovis aries 7904 a

PRJEB25677 Bovine gene expression atlas Bos taurus 876

PRJEB23119 Duroc pig macrophages (+/-) LPS Sus scrofa 84

PRJEB27337 Multi-tissue transcriptome associated with feed
efficiency in Nellore cattle

Bos indicus 172

PRJEB28653 Effect of maternal nutrition in late gestation in the
blood and skeletal muscle transcriptome of calves

Bos taurus 93

PRJEB23196 Goat gene expression atlas Capra hircus 336

PRJEB19386 Pig transcriptome and gene expression atlas Sus scrofa 610

PRJEB27455 Transcriptome profiling of liver and T cells in 4
livestock species by the FAANG pilot project

Capra hircus
Gallus gallus
Sus scrofa
Bos taurus

82

PRJEB25226 Water buffalo gene expression atlas Bubalus bubalis 4902

PRJEB24920 Horse bone marrow-derived macrophages (+/-) LPS Equus caballus 84

aOnly the files containing RNA-sequencing data will be processed.
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Table 3: ENA datasets

Accession Title

ERP104372 Host response to Newcastle disease virus challenge in the Harderian gland
transcriptome

ERP004390 The role of viral and host microRNAs in the Aujeszkys disease virus during the
infection process

SRP042295 Deep sequencing of the 5’ ends of viral mRNAs from all genome segments
transcribed in both human (A549) and mouse (M-1) cells infected with the
A/HongKong/1/1968 (H3N2) virus

SRP051574 Analysis of genetic variation and diversity of Rice stripe virus populations

SRP069043 Deep-sea hydrothermal vent virus compensate for microbial metabolism in
virus-host interactions

SRP012102 Host RNAs, including transposons, are encapsidated by a eukaryotic
single-stranded RNA virus

SRP075180 Multi-Host Evolution of Tobacco etch virus carrying eGFP: Raw sequence reads

SRP076509 Investigating intra-host and intra-herd sequence diversity of foot-and-mouth
disease virus

SRP055968 Mutational Bias of Turnip Yellow Mosaic Virus in the Context of Host Anti-viral
Gene Silencing

SRP082191 Rice Stripe Virus
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We will reprocess them through our in-house bioinformatics pipeline (an evolution of the RNA-
sequencing analysis pipeline used in [4]) re-implemented on the top of the CloudButton toolkit, and
compare them to the results obtained by running the pipeline locally on the Pirbright HPC cluster. In
parallel we will process data for similar animal diseases sequenced at Pirbright, both locally on the
Pirbright HPC cluster and on the CloudButton testbed.

4.2.4 Formats

In general all the files listed are in FASTQ format, which stores sequencing reads as a record com-
posed by:

1. A name produced by the machine that uniquely identifies the sequencing read

2. The sequence as a string of nucleotide bases (A, C, G, T, and N when the base is unknown)

3. A string of qualities. That is a vector of numbers, one per base, which express the probability
for the corresponding base to have been incorrectly determined, as estimated by the sequencing
machine.

The expected results will be in SAM format [8] which is a way to encode sequencing information
aligned to the genome.

4.3 Description of experiments

The experiments aim to demonstrate a number of facts:

• Prove that our workflows can be successfully ported to serverless architectures

• Demonstrate that the serverless implementations can scale up to very large external datasets
that we would not necessarily be able to store locally, or we would be unwilling to store locally
long-term

• Prove that the scientific results generated by our analysis workflows on the local HPC cluster
and on CloudButton platforms are the same

• Demonstrate that the technology developed within CloudButton allows us to gather new bio-
logical insights. They would arise from the comparison between our local datasets sequenced
at Pirbright and larger datasets publicly available; the latter would require the re-analysis of a
large amount of data and hence take a long time, or too much space, if we were to process them
locally

• Evaluate efficiency/cost-effectiveness of the cloud solution versus local computing.

4.3.1 Analysis pipeline

The proposed experiments revolve around an existing pipeline for the analysis of RNA-sequencing
data which has been developed by the PI and its group along the years. It is based on the GEM
mapper [9] and it is an update of the workflow originally used in [4]. The pipeline offers several
advantages in terms of accuracy and consistency of the results it produces. In particular, the quality
of the alignments generated depends only weakly on the knowledge of a precise annotation for the
organism being studied, which is an extremely important feature to have whenever a non-model
organism (such as most of the species considered at Pirbright) is studied.

Schematically, the pipeline can be described as follows:

1. A basic alignment block (see Figure 3). It takes as input a sequence of single-end RNA-sequencing
reads, and processes them by performing several alignment steps. In particular, each read is:

(a) First, aligned continuously, from its beginning to its end, to the reference genome
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(Map to annotation) 
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De novo introns (Known introns) 

Merge 

Basic alignment block

Figure 3: The basic alignment block of the RNA-sequencing alignment pipeline

(b) Second, continuously aligned to the transcripts present in the annotation, if such annota-
tion has been provided

(c) Third, aligned non-continuously, i.e. in two or more chunks, to the reference genome.
That is because, due to the biological mechanism of splicing, a continuous sequence in
transcript space can originate from different non-contiguous blocks in the genome (the
exons) being transcribed together after the intervening sequences (the introns) have been
skipped. As a result, some RNA-sequencing reads will not align to the genome as a con-
tinuous sequence. This stage of the pipeline is also called de-novo split mapping; it allows
the unbiased detection of most introns even though they are not present in the original
annotation or the annotation is unknown

(d) Fourth, all the introns present in the annotation (if an annotation has been supplied) and
those detected at the previous stage are collected. An extended annotation (i.e., an ex-
tended set of transcripts) is generated, and the read is aligned to it

(e) Finally, all the alignment generated at stages (a), (b) and (d) are collected, merged to elim-
inate redundancies, and scored by their quality (the more errors with respect to the refer-
ence sequence and the less unique the sequence, the less the final score).

2. Once the mechanics of the basic alignment block have been described, one can define the full
pipeline in terms of the basic block (see Figure 4). Essentially, reads are mapped through the
basic block first to a host reference genome (might be human, or that of some livestock species)
and then to one or more viral genomes. In principle the alignment to host and virus(es) could be
performed together in the same step, but due to practical reasons (such as imprecise knowledge
of the virus, or the possible presence of more than one virus) it is often done separately. One
way or another alignment to the different references are merged in the end. The same procedure
is repeated separately for the two ends of each read if, as it usually happens, one is processing
paired-end reads. Once that has been done, the alignments for the two ends are paired and
scored.

Finally, the alignment obtained so far are projected onto the annotation, in order to derive counts
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Figure 4: A general view of the pipeline in terms of its basic alignment block

(i.e. expression levels) for each transcript or gene present in the annotation (this step is not shown in
the figure).

4.3.2 Transition to serverless

Not all the components of the analysis pipeline translate straightforwardly to serverless architectures.
One example is the need for alignment programs based on the Burrows-Wheeler transform, such as
the GEM mapper, to generate and store into memory a binary data structure known as an index. The
index is a transformed version of the reference genome; thanks to its design, it allows to quickly find
exact queries in the reference, ultimately making possible the implementation of fast error-tolerant
alignment algorithms for sequencing reads. Mammalian genomes such as the human one are rela-
tively large (about 3 billion nucleotides) and as a result the index for a whole human genome can be
bulky, ranging from several hundred MB to several GB, depending on the implementation. While
such indices are usually pre-computed once and for all when the analysis is being set up, unfortu-
nately the need to load a bulky index in memory before each alignment run does not cope well with
the concept of serverless platform.

However there are many relatively simple ways to circumvent the problem, one of those being
that of splitting the reference genome into smaller chunks. That introduces a degree of inefficiency,
as one is forced to re-align the same read to all the chunks, and one will need to collect and merge
all the alignments at the end of the computation. Nonetheless, the overall gain in computing power
acquired by moving to serverless should be amply sufficient to offset the additional cost, and lead
to a significant reduction in the overall wall-clock time. Once the problem of the index is solved,
aligning sequencing reads to a reference genome can be trivially parallelized – in essence, each read
can be aligned independently. We are currently working with Imperial College in order to define a
WebAssembly-based strategy and port.

4.3.3 Evaluation criteria

We have identified five main tests that we will perform:

1. Identical results. The data processing performed locally on the Pirbright HPC cluster and on
the CloudButton-based pipeline should produce the same results. That is a relatively simple
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test (identical output files) to be conducted if we suppose that the port will generate identical
alignment output. However, the need for an increased degree of parallelism and the porting
of the computation to cloud technology might need the introduction of some degree of non-
determinism into the algorithm. Here we examine two typical cases:

(a) Loss of the original order. Sequencing reads are produced in a certain order, typically
dictated by the position at which they originate in the flow cell used by the machine.
The order is not by itself strictly significant – in the end the information coming from all
the reads is gathered together and distributed according to the localisation of the reads
on the genome, through what is called the creation of a read pileup. However, the files
being considered are bulky (typically 30GB each uncompressed, but possibly larger), and
having to re-sort a large number of them in order to be able to compare them might need
the development of some ad-hoc procedure.

(b) Not identical alignments. As previously depicted when examining the design of the
RNA-sequencing pipeline, the final alignments for each read are selected after several
rounds of mapping, as the best in a list of several possible ones. The main criterion for
selection is mapping quality – i.e., how much of the sequence of the read is mapped by an
alignment stage, and how many errors are needed in order to do so. Some cost function
has been implemented that is able to score alignments according to these criteria. However
alignments are inherently ambiguous, i.e. there are sometimes several ways to express the
same result, and hence it is possible that different alignment stages would produce slightly
different results. The problem might be exacerbated by the need to split the computation
into separate blocks in order to increase parallelism. In particular, if the computation on
the cloud is executed as a number of separate steps whose results are then brought to-
gether in the end, the results might be slightly different from those produced by the local
pipeline. Again, that would likely need a specific comparison procedure to be developed.

2. Wall-clock time. In situations where the analysis could be performed locally (i.e., the data
and the intermediates of the computation are not too big to be stored locally), one of the main
purposes of porting the analysis to the cloud is typically that of decreasing the overall wall-
clock time of the computation – as there is an overhead implied by moving the data to the
cloud, there should be clear advantages for doing so, and the desire to reduce the waiting
(wall-clock) time is likely to be one of those. Usually one can decrease wall-clock time at the
expense of increasing parallelism, but increasing parallelism will eventually lead to a more and
more inefficient process (see next point). The typical result will be a sweet spot, i.e. an optimal
amount of parallelism that leads to the best possible wall-clock time. Such a sweet spot will
need to be found by conducting suitable computational experiments.

3. Accumulated time, i.e. scalability in computing time. Even if an analysis can be performed
very quickly (i.e., it takes very little wall-clock time to be executed) that does not necessarily
mean that the overall computing time required is low. In fact, what happens very often is that
the more parallel the analysis is the more inefficient its basic process becomes. That is due to
a variety of reasons such as inter-process communication, or the need for merging of partial
results, or the need to replicate computation to some extent in order to increase parallelism.
So one of the main questions to be answered is: How does the accumulated time taken by
the analysis across all the computing agents scale with the size of the data to be analysed and
the number of agents? Although in general serverless platforms seem able to provide large
amounts of computing power at low costs, depending on the computation model selected the
answer to the question might have implications in terms of the viability of the different possible
solutions, and in general it would provide important suggestions about how to optimise the
degree of parallelism of the computation.

4. Scalability in size. The other big advantage provided by porting analysis workflows to the
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cloud is given by the possibility of analysing on the cloud datasets that would be too bulky to
process locally. One of the key questions to answer is then: How big are such datasets? How
do the wall-clock time, the accumulated time and the cost scale on a serverless platform with
respect to the size of the dataset considered? Again, the answer to this question is extremely
relevant to understand the scope of the technology, its range of applicability and its limitations.

5. Cost effectiveness. Once information has been generated for the previous points, it becomes
possible to formulate precise guidelines, and assess the precise range in wall-clock time, ac-
cumulated time and size for which the porting to serverless of the original pipeline are cost
effective. That will be essential to formulate informed decision for the potential and future of
the technology.
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5 GeoSpatial use case
Nowadays, the use of GeoSpatial technology and their related extensive databases is swiftly grow-
ing and it will continue to increase at a fast rate as new applications emerge and new data become
available. A bulk of these services and point cloud data applications is devoted to land and urban
planning, fire risk assessment mapping, ecosystem modeling, water use mapping, or infrastructure
network design.

The new developments of the GeoSpatial technology have made available vast amounts of high
resolution imagery and cloud point data which offer the potential to cover huge extensions of terri-
tory and allow to analyze in detail many variables simultaneously for each geographical coordinate

However, storage and memory limitations of conventional IT systems only allow analyses for ei-
ther low to medium spatial resolution data calculations in large territories or highly detailed results
in smaller areas, but do not allow integrating at the same time different data sources and reaching
high accuracy over large regions. In particular, huge LiDAR datasets from large areas cannot be han-
dled appropriately by standard software. This fact limits its usability due to the high cost associated
to data storage and GeoSpatial information extraction of forest metrics, for example. In addition,
these calculations frequently entail long periods of processing time [10].

The serverless platform developed in the CloudButton project will be used to develop high-
resolution hybrid land-cover mapping and 3D fuel modeling for forest fire risk assessment combining
satellite imagery and LiDAR data. Besides, we will map water use footprint combining satellite data
and crop GeoSpatial information.

5.1 Experiments description

This use case comprises three experiments:

• EX1: High-resolution hybrid land-cover mapping: Through multi-temporal imagery from
Sentinel 2 MSI sensor and LiDAR point cloud data from PNOA (National Plan of Aerial Or-
tophography), we will carry out a hybrid land-cover classification of Peninsular Spain by means
of advanced analytical remote sensing fusion techniques. In particular, supervised classifica-
tion of image objects, OBIA, for 12 Sentinel-2 images, one per each month of the year, will be
performed through CloudButton and, after that, the land-cover discrimination outcome will
be refined by LiDAR-derived 3D metrics using this toolkit. The expected result will be a clear
improvement of map quality in comparison with current CLC mapping [11]. The same method
will be applied using other computer facilities to test the same experiment in a selected sample
of small areas of Spain, including photo-interpretation verification procedures. Cloud versus
local processing comparison will be used to assess the incremental performance improvement
(Figure 10).

• EX2: 3D fuel mapping for forest risk assessment:. We will use the same source of satellite and
LiDAR big data described in the first experiment. We will generate a fuel map of three large
regions of Peninsular Spain, which include protected areas, using remote sensing fusion tech-
niques and following an object-based classification model. Segmented and supervised classifi-
cation of Sentinel-2 images and 3D LiDAR-derived metrics as input data shrub and tree canopy
structure of two dates (reference years) will be used as input data in spatial fire risk modeling,
that also benefits from high resolution elevation models and other topographic input variables.
The expected result is a high-resolution forest fire risk map that is useful for decision-making in
forest planning and management (a meaningful increase in map accuracy and better land-cover
discrimination). Also, we will make a performance comparison assessment of the results ob-
tained through CloudButton toolkit and conventional software and computer abilities (Figure
10).

• EX3: Mapping water use footprint:. By comparing water use estimates obtained from two dif-
ferent databases over extended regions of irrigated crop fields, we will map differences in the
water use footprint of irrigated arable lands in representative large areas of Peninsular Spain.
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On the one side, with high-resolution NDVI index (derived from the same satellite imagery
than previous experiments), we will identify actual irrigated crop areas and will estimate water
consumption using multi-date imagery data along the growing season. Mapping these vari-
ations along a certain period of time with frequent updates will be only possible due to the
continuous update of open-access databases and the utilization of the CloudButton capabili-
ties. These results will be combined with LiDAR data from PNOA to discard tree vegetation
areas and refine the model. On the other side, we will estimate and map water consumption in-
dicators considering the officially declared and georeferenced irrigated arable land area which
is available from SIGPAC, the Agricultural Common Policy open access database and specific
correction factors (irrigated land area and crop water consumption volume). The comparison
of both results will identify non-coincident areas which would help to monitor water use effi-
ciency and funding resource allocation.

5.1.1 Data

Regarding data volumes, at following it is provided a description of the different datasets involved
in the three experiments of the GeoSpatial use case:

• Administrative regions: This data contains administrative regions that will conform the ex-
perimentation zone. The administrative limits will be obtained from the official cartography
available at the National Geographic Institute (CNIG-IGN), namely: municipal, provincial
and autonomous precincts and the municipal, provincial and regional limit lines registered
in the Database of Jurisdictional Limits of Spain (BDLJE). The reference geodetic system will
be ETRS89 for the Iberian Peninsula and the Balearic Islands and REGCAN95, compatible with
WGS84, for the Canary Islands. This geometry of the boundary lines has, in the best of cases
and with the exception of those boundary lines that have been redefined on the ground, the
precision of the 1/25,000 scale, conditioned by the topographical methods and instruments
used to obtain them and subsequent cartographic edition. This data set is available in GML
format through the WFS and ATOM download services and in shapefile format in the CNIG
Download Center [12].

• Sentinel-2. This satellite is part of the constellation of satellites belonging to the Copernicus
program. Copernicus is an initiative of the European Commission in collaboration with the Eu-
ropean Space Agency (ESA) and is described as the most ambitious program developed to date
in terms of Earth observation, allowing great temporal and spatial precision. The instruments
included are multispectral cameras with spatial resolutions of 10 m2, 20 m2 and 60 m2 per pixel
that capture in 13 different bands with wavelengths from 443 nm to 2190 nm. Due to this ex-
periment is referring to the calculation of the spectral indices, it is essential to use multispectral
information, which, in this case, are only capable of capturing Sentinel-2 and Sentinel-3 OLCI (it
is noteworthy that it is the Sentinel-2 satellite sensors that offer the highest spatial resolution).
The Copernicus Sentinel-2 mission comprises a constellation of two orbiting satellites placed in
the same synchronous solar orbit, in 180° phases with each other. Its objective is to monitor the
variability in the conditions of the earth’s surface and its wide strip width (290 km) together
with its high revision time (10 days at the equator with a satellite, and 5 days with 2 satellites
in cloudless conditions that result in 2-3 days in latitudes media) monitoring the changes in
the surface of the Earth. The coverage limits are between latitudes 56° south and 84° north.
Data can be downloaded from Copernicus Open Access Hub [13]. Regarding the volume of
data, it must be taken into account that it is the data referred to the entire national territory.
The casuistry of these experiments means that the data must be downloaded with a frequency
of between 15 days and a month, so that the storage space must be multiplied, as well as the
processing of the different layers.

• SIGPAC. SIGPAC is the spatial information contained in the Geographic Information System
of the Common Agricultural Policy (SIGPAC in Spanish), which is the responsibility of the
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Figure 5: Footprint size of a Sentinel-2 tile

Ministry of Agriculture, Fisheries and Food. This cartography allows to identify the use that
is given to the agricultural and livestock parcels throughout the Spanish territory. The data
must be requested from the competent administration, since they are not available for direct
download. It is public information and can be consulted in the SIGPAC Viewer (without iden-
tification, due to the data protection law, of the owner/s).

Figure 6: SIGPAC screenshot

• PNOA - LiDAR point cloud. LiDAR technology, acronym for Laser Imaging Detection and Rang-
ing, is a remote-sensing method based on discrete laser pulses and time intervals aimed to
measure ranges (variables distances) between an air-borne transmitter and targets on the Earth
surface. These laser pulses, combined with triangulation information, generate datasets of the
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Figure 7: LiDAR screenshot through plas.io

Earth surface and its characteristics called LiDAR point cloud data. PNOA offers noise-free
point clouds categorized according to the American Society for Photogrammetry and Remote
Sensing (ASPRS) classification with a horizontal resolution of 0.5 points/m2 and a vertical ac-
curacy of 0.5 m. These point clouds were obtained from several LiDAR-equiped flights, with
swathes covering the whole Spanish extension during two time periods: the first period from
2008 to 2015 and the second period, which started in 2015, is still recording data. Thus, PNOA
is a program currently in progress that will provide updated data in the close future. LiDAR
point clouds and are usually compressed in .las or .laz format and, because their size can be
extremely large, its computation can be time consuming.

• Meteorological information. Data of the different meteorological stations located in the study
area. The data of all weather stations use common parameters such as maximum daily temper-
ature, minimum daily temperature, temperature, speed, wind speed, etc. The sources used to
obtain this information are:

– Agricultural Information Service of Murcia (SIAM) [14]

– Spanish Meteorological Agency (AEMET) [15]

• Irrigation communities. In order to know the data referring to the irrigation of crops and to
know the geographical extension of each community of irrigators, they will be resorted to. This
information can be offered in different formats depending on each community and must adapt
to current regulations. It will only be done once in the whole process and it will consist of
defining a polygon of each one of the areas that each community manages.

• Natura 2000. It is defined by the EU as a network of core breeding and resting sites for rare and
threatened species, and some rare natural habitat types which are protected in their own right. It stretches
across all 28 EU countries, both on land and at sea. Since the forest fuel experiment will be located
in several Spanish National Parks, the extent of the forest fuel experiment will be coincident
with the boundaries of some of these protected areas. Such information is available through
the platform of the Ministry for the Ecological Transition. [16]
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Table 4: GeoSpatial use case datasets

Dataset Owner Access Volume Format

Administrative
areas

National
Geographic
Institute
(CNIG-IGN)

Public 31 MB
for all
of Spain
region

Shapefilea

Sentinel-2 European
Commission

Public 300 GB TIFFb

SIGPAC Ministry of
Agriculture,
Fisheries and
Food

Public 200 GB Shapefile

LiDAR National
Geographic
Institute
(CNIG-IGN)

Public 8 TB lazc and lasd

Meteorologic
Information

Agrarian
information
service of the
Murcia Region
(SIAM) and
Spanish Agency
of Meteorology
(AEMET)

Public 9 KB for
one me-
teoro-
logical
station
and for
one day

CSVe

Irrigation
communities

Irrigation
community of
Murcia Region

On demand 65 KB
for one
year

Shapefile

Natura 2000 European
Comission -
Environment

On demand 80 MB
for
Spain

Geopackagef

aIt is a digital vector storage format for storing geometric location and associated attribute information
bIt is a computer file format for storing raster graphics images
cLAZ is a compressed light detection and localization (LIDAR) data format often used to transfer large amounts of

LIDAR data.
dIt is an industry standard binary format for storing air LIDAR data..
eIt is a delimited text file that uses a comma to separate values
fStandard of the Open Geospatial Consortium

5.1.2 Processes

This subsection shows a list of geoprocesses (processes with geospatial information) involved in the
three experiments. All these geoprocesses are developed using Python [17]. The software used to
model them will be QGIS [18], using for this the PyQGIS [19] framework. For each one of the experi-
ments of this use case, Figures 10 and 11 show the inputs, the geoprocesses and outputs involved

Download Sentinel-2 images
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For this geoprocess a Python script will be generated. This script allows to select data by dates. Later
it will be supported by the MTN (National Topographic Map) sheets for the definition of the areas of
previous study, as it shows in the figure 8 .

Figure 8: MTN sheet over Sentinel-2 tile

Radiometric correction
Once downloaded the satellite images, it is necessary to carry out a process of corrections (defects in
the image produced in some cases, by faults of the sensor itself or alterations in the movement of the
platform that transports it, together with errors of the interaction of the atmosphere in the process of
information acquisition), which consists of correcting the values of the pixels of the image by apply-
ing various techniques and specific analyzes.

Geometric correction
The objective is to adjust the image perfectly to the position it should occupy in the territory. For
that there are different techniques such as the use of Digital Elevation Models (DEM). This step is of
vital importance since it allows the comparison between satellite images or other spatial information
referring to the same territory.

Application of corrections
The downloaded Sentinel-2 images will present two possible treatment levels: L1C and L2A. Those
referred to the first case need to be subjected to an atmospheric correction ("Top of Atmosphere") to
be at the same level as the L2A images, which already include this correction.
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Object-based images analysis (OBIA)
This technique analyses the set of pixels of an image and provides an output equivalent or similar to
the so-called objects. The process of OBIA analysis consists of the following steps:

• Segmentation: This step separates an image into primary objects, which are the units which
will used to classify the image.

• Classification: This step consists of defining the attribute for each objects. For example: object
1 –> buildings, object 2 –> water bodies, etc..To improve this classification, is mandatory to use
a learning algorithm. In this case it is going to use Random Forest algorithm [20]. For this,
the training areas will be defined based on the sheets that MTN described previously, giving
a greater homogeneity to the whole. The selection of these training areas will be based on
geographic criteria that are capable of covering the maximum of the territory’s variability in
terms of the diversity of elements that may occur in it.

LiDAR products and metrics
It refers to the different products and metrics derived from the LiDAR point cloud:

• Digital Elevation Model (DEM). Raster image that represents the continuous variation of topog-
raphy in the space, without including heights associated with biological (i.e. trees or shrubs) or
anthropic (i.e. buildings) elements.

• Digital Surface Model (DSM). Raster image that represents the continuous variation of the sur-
face, including biological and anthropic elements.

• Canopy Height Model (CHM). Raster image that represents the height variation of biological
elements (i.e. trees or shrubs). It is obtained by the difference of an DEM and an DSM of
biological objects.

• Tree Canopy Height (TCH). Raster image that represents the mean tree height in each pixel.

• Shrub Canopy Height (SCH). Raster image that represents the mean shrub height in each pixel.

• Fraction of Canopy Cover (FCC). Percentage of the area covered by the vertical projection of
the vegetation in each pixel of a raster image.

• Tree Canopy Cover fraction (TCC). Percentage of the area covered by the vertical projection of
the tree canopy in each pixel of a raster image. The value of this indicator strongly depends on
the search radius.

• Shrub Canopy Cover fraction (SCC). Percentage of the area covered by the vertical projection of
the shrub canopy in each pixel of a raster image. The value of this indicator strongly depends
on the search radius.

• Slope. Raster image that represents the maximum altitudinal variation in each pixel of a raster
image in relation to the surrounding pixels. The units can be radians, degrees or percentage.

• Aspect. Raster image that represents the angle that a slope faces with respect to the north. The
units can be radians, degrees or percentage.

• Standard deviation. Standard deviation of the vegetation height in each pixel of a raster image.

• Count. Mean number of returns in each pixel of a raster image.

• Maximum. Maximum vegetation height in each pixel of a raster image.

• Minimum. Minimum vegetation height in each pixel o a raster image.
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Select region
It will be the first geoprocess that will allow to obtain the study area.

Tiling
Due to the large size of the satellite images and, especially, of the uncompressed LiDAR point clouds,
it is necessary to split the spatial information into squared blocks of a smaller size and weight than
the original source to be able to use them. This process is called tiling and it is usually used when
improved performance and reduced computation times are required (often by means of parallelizing
scripts).

Note here that this use case is amenable to serververless parallelization because of being em-
barassingly parallel.

Stackering
Raster images can be composed of several bands (i.e. Sentinel-2 images) which can be interpreted as
an array of three dimensions, x, y and z (with as many z-coordinates as raster bands). Stackering is
a technique that stores data in this form to keep diverse information under the same spatial coordi-
nates x and y within a single object or file. Consequently, analyses that require the use of different
raster bands referred to the same spatial location, such as segmentation, can be carried out in stacked
files.

Mosaic
The download of Sentinel-2 images do not exactly match the administrative limits of any region,
since the data is collected in different passes. Therefore, to complete an administrative area such as
the Region of Murcia, several images must be collected (this is the mosaic process).
The result of this geoprocess is a set of multispectral bands, i.e, mosaics are obtained from each of the
bands of the satellite’s channels

Mask
Through this action, the previous mosaic is trimmed according to the limits of the desired adminis-
trative area.
The result of this process is a multispectral image of the perfectly bounded study area.
In addition, as many bands as there are channels are obtained from the satellite (13). These bands
cover the geographical area that has been delimited.

Merge
In those cases where the information does not have the required extent (either because it has been
tiled or because the final product has a larger extent than the input data), the Merge process can spa-
tially join all parts in a single file to get the desired extent. The Merge process relies on the coordinates
of each part to find the adjacent components and join them in order to build an object of the desired
extent. In addition, this process can be applied to both spatial information data types: vector and
raster.

Remote sensing indexes
Different algorithms will be used to know the parameters needed for each experiment. This tech-
nique is based on map algebra (figure 9), which allows to cross the pixel values of different bands
located in the same geographical space from previously defined algorithms.

Select irrigation crops parcels
Based on the SIGPAC data, the parcels declared as agricultural and, among them, those of irrigated
crops will be discriminated.

Zonal statistics
Using the geometry of the plots and the data corresponding to the different obtained remote sensing
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Figure 9: Map Algebra example

indexes, the statistical values of the crop corresponding to each one of the plots can be calculated.

Temperature calculation
The temperatures are modeled from point data measured in the meteorological stations of the net-
works previously described. For this, a mixed method is used in which Machine Learning is used
with the Splines and Random Forest algorithms.

Humidity
Humidity will be spatially modelled with the Inverse Distance Weighted (IDW) algorithm from weather
stations distributed through peninsular Spain. As with temperature, humidity is a required variable
for forest fuel modelling.

Topology
A series of topological standards will be established to be implemented in the PostGIS geographic
database, in order to avoid distortions in vector cartography (mainly SIGPAC), such as duplicity of
borders, repeated plots, etc., that cause errors in the data processing and gross errors in the calcula-
tion of surfaces.

5.1.3 Outputs

The results of these geoprocesses are described next:

1. High-resolution hybrid land-cover mapping (1st experiment)

• Land cover map: segmented classification of the type of coverture of the land based on
SIOSE land cover map.
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Figure 10: 1st and 2nd experiment pipelines

2. 3D fuel mapping for forest risk assessment (2nd experiment)

• Forest fuel map: one of the essential variables to estimate fire risk is forest fuel, which
can be modeled using spectral information obtained from satellite-derived data, spectral
indices, and clouds of LiDAR points. The most common approach is to assign a categor-
ical value to each vegetation class based on the canopy cover type, including that of the
understory when it is present, and the height of the vegetation.

• Ignition probability map: ignition probability is the probability of a spark causing a fire
when it lands on a certain forest fuel. Ignition probability modeling requires information
regarding temperature, relative humidity, inclination of slopes, orientation of slopes and
vegetation class.

• Fire risk assessment map: the assessment of fire risk requires a multidisciplinary and het-
erogeneous approach that should consider both natural (i.e. probability of ignition) and
socio-economic agents (i.e. prevention policies).

3. Mapping water use footprint (3rd experiment):

• Crop conditions: it is the first result that is obtained from the calculation of the remote
sensing indexes, allowing knowing the state of the crops on a given date.

• Irrigation crops and changes in land use: crossing the data with LiDAR, you can know the
land uses, as well as the possibility of discriminating between herbaceous and arboreal
crops.
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Figure 11: 3rd experiment pipelines

• Tree crops: only the part corresponding to tree crops can be extracted from the previous
result.

• Water consumption estimations (final result): as a final result, crossing all the results ob-
tained along the process with the data from the community of irrigators and meteorolog-
ical data sources, an estimation of the water consumption necessary for all the crops of
an Autonomous Community can be carried out like that of the Region of Murcia, where
agriculture has a great importance in its economy.

The processes developed for these three experiments will be repeated every 15 days during the first
year and depending on the results obtained, the required periodicity will be determined. Therefore,
the information referred to Sentinel-2 will be downloaded twice a month in that first year and at least
once a month in the following.

5.2 Pipelines

Figure 10 depicts a scheme of Experiments 1 and 2 processes. In these two experiments there are
four type of inputs: LiDAR point clouds, weather variables, a layer, and Sentinel-2 images. They
are defined by the user in each case depending on the final product desired. Usually, only temporal
Sentinel-2 images, a LiDAR point cloud, and the study area extent will be required. In other cases,
additional variables will be required. For instance, when ignition probability and fire risk assessment
want to be computed, local temperatures and humidity data in each point will be needed along with
spatial information regarding the location of roads, cities and leisure areas.

The layer, which determines the study area extent, will frame the data analyses. It serves two
objectives: first, to subset the spatial data to the desired extent and, second, to define the spatial area
of the tiles. Once the extent of the study area has been defined, LiDAR point clouds and Sentinel-
2 imagery start being processed. On the one hand, LiDAR point clouds subsets are tiled with a
buffer and corrected to compute different product and metrics. Then, the buffers are removed and
the LiDAR tiles are merged up and co-registered, (that is, stacked) with the Sentinel-2 imagery. On
the other hand, the Sentinel-2 imagery are corrected, cropped to the study area extent, and tiled.
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As a result, two different stacks are produced: first, a Means stack containing annual temperature
average values and, second, a Temporal stack containing all the temperature values of the time period
defined by the user. With the Means stack and a DSM generated with the LiDAR point cloud data, a
segmentation of data is computed. The resulting objects of the segmentation are classified according
to their shape indexes and different spatial statistics (e.g. maximum, minimum, average) obtained
from the Temporal stack of Sentinel-2 imagery and several LiDAR products and metrics.

The resulting output is a Land Cover map wherein forest cover can be extracted and used as an
input to generate a Forest Fuel map through a decision tree process. The Forest Fuel map requires
two additional products apart from forest cover: an ignition probability map and a forest risk assess-
ment map. In order to generate these two products, information regarding the weather conditions
are needed (temperature and humidity). Apart from temperature and humidity, slope, aspect, and
shadow percentage obtained from predefined tables are also required to generate the ignition prob-
ability map. Besides, the fire risk assessment map uses distances from roads, cities and leisure areas
as variables. Both products are computed with regression kriging and simple kriging approaches.

Figure 11 depicts a scheme of Experiment 3 processes. We can see that six are the inputs of the
geoprocesses described previously for the 3rd experiment: Administrative Areas is used to select the
region to work with it; Sentinel-2 images are used to extract their multispectral bands; Then, using
these two inputs is possible to calculate some indexes which are used later to estimate the water
requirements of the crops, using also for this calculation the data obtained from SIGPAC (which is
used to estimate the kind of crop in the selected area) and the meteorological data obtained from the
SIAM sensors network. The rest of inputs (LIDAR and Irrigation communities) are used to evaluate
the water estimations that the experiment provides as output.

5.3 Transition to serverless

5.3.1 Data partition

With regard to geospatial data parallelization, tiling appears as a key process, since each spatial point
is related with its sorroundings. Indeed, this phenomenon is called spatial autocorrelation and it’s
well described in literature.

As far as the 1st and 2nd experiments are concerned, there are two different tiling approaches
depending on the data type: Sentinel-2 images and LiDAR point clouds.

• Sentinel-2 images. A user-defined grid is created for each image, whose spacing size must
be a divisor of the total extent of the image (the extent of the image appears in its metadata).
Afterwards, the grid is used to crop the image in as many tiles as grid cells exist, naming them
after their top left corner coordinates.

• LiDAR point clouds. Point clouds are downloaded already tiled and with top left corner co-
ordinates specified in their names, although their spacing is still too big to ensure reasonable
computation times. In addition, a buffer distance is required for the computation of certain
geoprocesses as the slope and aspect algorithms, to avoid the edge effect. For all the above
reasons, it is necessary to create tiles with smaller spacing and buffer distance. After, once all
geoprocesses and statistics are computed, buffers are removed from the tile, by means of a grid
that only considers the spacing value used in the tiling process and the coordinates of each
LiDAR tile. Next step consists in merging all the information generated from LiDAR tiles up
to the Sentinel-2 images tile spacing, enabling them to be co-registered through the stacking
process.

Both tiling approaches depend on the creation of a user-defined grid, which implies that the size
of tiling can be different in each case. In both cases, the size of the tile should be constant through the
whole process.

As indicated above, for the third experiment of the GeoSpatial use case, two sources of data are
used to estimate water consumption in a given area: Sentinel-2 raster layers provided by the ESA and
the MTN sheets provided by the IGN. The first one divides the territory into zones called Tiles, while
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the second classifies the geographical area into sheets. The different geoprocesses involved in the
experiment take as input a tile, a sheet or both, so that to calculate the water consumption of a region,
we must take into account all the tiles/sheets that comprise this region. This is fundamental when
establishing the parallelization architecture, since to estimate the water consumption of a region, the
geoprocesses can be launched in parallel for each tile/sheet.

5.3.2 Parallel tasks for geoprocesses

Different parallel tasks have been identified so far for each one of the experiments developed in the
GeoSpatial use case. Each one of these tasks is associated to a set of different technical specifications
in sequential and implements some of the geoprocesses described above. These tasks are summa-
rized in Tables 5 and 6, and tested on test datasets in a single machine. In the case of the two first
experiments, these tests have been carried out on a virtual machine with Ubuntu OS: Intel (R) Core
(TM) i7-7200k CPU 4.20 GHz, 2 cores, 10405 MB of RAM and a storage capacity of 100 GB. In the case
of the 3rd experiment, the tests have been carried out in a physical machine with Windows 10 64-bits
OS: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 16GB of RAM, 4 cores, 8 threads and a storage
capacity of 1 TB.

Parallel task Sequential
time

RAM Space Geoprocess

Subset LiDAR point
clouds

0.12 sec < 60 MB 500 MB Get subset of LiDAR tiles
based on their names

Tile LiDAR point clouds 147 sec < 60 MB 500 MB Compute tiling process
over 15 tiles of 2000 m

Remove LiDAR overlay
points

432 sec < 5 MB 1.8 GB Computed over 1470 tiles
of 250 m

Remove noise from Li-
DAR point cloud

4867 sec < 5 MB 1.8 GB Removing noise from 1470
tiles of 250 m

Surfaces from LiDAR 3088 sec 1.2 MB 1 GB Compute DEM, DSM,
CHM, TCH and SCH for
1470 tiles of 250 m

Slope and Aspect 143.7 sec 20.1 KB 37.68 MB Computing slope and as-
pect. 1920 tiles of 250 m.

FFC to folders 141 sec < 5MB 1.8 GB Compute TCC, SCC and
FCC over 1470 tiles of 250
m

LiDAR metrics 293 sec < 5MB 1.8 GB Compute stdandard devi-
ation, minimum height,
maximum height and the
count of returns over 1470
tiles of 250 m

Mask LiDAR files 180 sec 75.6 KB 108.5 MB Eliminates buffers from
1470 rasters of 250 m

Create images tiles 1575 sec sec 600 MB 2.4 GB Create 2000 m spacing tiles
Mosaic LiDAR rasters 3.63 sec 75.6 KB 108.5 MB Merge LiDAR tiles up to

images tiles spacing (1470
tiles of 250 m )

Table 5: Parallel tasks identified in the 1st and 2nd experiments, it continues in the next page
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Parallel task Sequential
time

RAM Space Geoprocess

Temporal means images 9.76 sec 78.6 KB 442.1 MB Create temporal means of
bands 2, 3, 4 and 8 over
5760 tiles

Temporal stacking 23.9 sec 78.6 KB 442.1 MB Create temporal stacks of
bands 2, 3, 4 and 8 over
5760 tiles

Stack spatial information 2.73 sec 313 KB 963 MB Co-register all spatial in-
formation based on its co-
ordinates (617 tiles)

Stack for segmentation 0.329 sec 313 KB 226.9 MB Co-register temporal
means and DSM on its co-
ordinates for segmentation
(376 tiles)

Segmentation 5.71 sec 4.3 MB 68.6 MB Segmentation of 16 tiles
Getting stats segments 824 sec 235 KB 3.8 MB Getting stats from the tem-

poral and lidar informa-
tion stack (64 tiles)

Join training and stats 28.8 sec 800 KB 3.8 MB Joining statistical informa-
tion to training dataset

Land Cover Map (pre-
diction)

TBD 568 KB 9.4 MB None

Forest Fuel classification 4.70 sec 488 KB 6.9 MB Decision tree over vege-
tation classes of a Land
Cover classification (16
tiles)

Ignition probability TBD TBD TBD None
Wildfire risk TBD TBD TBD None

Table 5: Parallel tasks identified in the 1st and 2nd experiments
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Parallel task Sequential
time

RAM Space Geoprocess

Downloading meteo-
rological data from the
AEMET by station

1 sec. 19 MB 10 KB none

Radiometric correction
for each tile downloaded
from Sentinel-2 (results
by tile)

2011 sec. 6 GB Aprox
907
MB/tile

radiometric correction

Geometric correction for
each tile downloaded
from Sentinel-2 (results
by tile)

2011 sec. 6 GB Aprox
907
MB/tile

geometric correction

Obtain the study areas
from an array of iden-
tifiers and Obtain the
rasters from the 4th and
8th bands of each study
areas (results by sheet)

135 sec. 50 MB 352 KB Select region, study area
and mosaic

Obtain agricultural areas
from a list of study areas
(results by sheet)

0.3 sec. 43 MB 215 KB Select region and study
area

Obtain irrigated areas
from a list of study areas
(results by sheet)

0.3 sec 43 MB 215 KB Select region, study area
and select irrigation crop
parcels

Calculation of the NDVI
of each one of the study
areas

14 sec. 1 GB 350 KB Mask, multispectral infor-
mation and remote sensing
indexes

Cultivation areas and
changes in land use
(results by sheet)

0.8 sec. 45 MB 88 KB Remote sensing indexes
and temperature calcula-
tion

Arboreal crops identifi-
cation (results by sheet)

0.3 sec. 45 MB 44 KB Select region and study
area

Table 6: Parallel tasks identified in the 3rd experiment
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6 Project Vision and State of the Art
In 2017, two relevant research articles [21] [22] demonstrated that Serverless Function as a Service
(FaaS) could sustain massively parallel computations in the Cloud. The former presented ExCam-
era, providing on-the-fly video encoding over thousands of Amazon Lambda Functions. ExCamera
proved to be 60% faster and 6x cheaper than using VM instances. Another relevant work is the
"Occupy the Cloud" paper, showcasing simple MapReduce jobs executed over Lambda Functions in
their PyWren prototype. In this case, PyWren was 17% slower than PySpark running on r3.xlarge
VM instances. But the authors claimed that the simplicity of configuration and inherent elasticity of
Lambdas justified the performance penalty. In this paper, they did not compare the costs between
their lambdas and the VM experiments.

Both research works demonstrated the enormous potential of serverless data analytics. The two
major advantages are clearly the simplicity and the massive scalability and elasticity of the model.
On the one hand, the scaling, deployment, provisioning, fault-tolerance, and monitoring of functions
is delegated to the cloud provider. Furthermore, the programming simplicity of functions clearly
paves the way to a smooth Cloud transition. On the other hand, the transparent and almost infinite
elasticity boosts the analysis of huge data volumes accessible in Cloud Object Stores.

But Serverless Computing is nowadays not adequate for many data analytics tasks due to two
fundamental problems: high cost and lack of performance compared to Cluster Computing or even
VMs running Spark. Two recent articles have outlined the major limitations of the Serverless model
in general: [23] and [24]. In the latter, they review the performance and cost of several data analytics
applications. They show that MapReduce Sort (100TB) was 1% faster than VMs, but costing 15%
higher; Linear Algebra (NumPyWren) was 3x slower than an MPI implementation in a dedicated
cluster, but only valid for large problem sizes; and Machine Learning pipelines (Cirrus) were 3x-5x
faster than VM instances, but up to 7x higher total cost.

Furthermore, existing approaches must rely on auxiliary Serverful services to circumvent the
limitations of the stateless serverless model. PyWren uses Amazon S3 for storage, coordination, and
communication, Locus uses Redis ElastiCache In-memory system, ExCamera relies on a external
rendezvous and communication service, or Cirrus relies on disaggregated in-memory servers.

In this deliverable, we identify as ServerMix, the hybrid applications combining Serverless and
Serverful services. We will review how most related work can be classified under the ServerMix
umbrella term. We will also show how a ServerMix application can still provide transparent provi-
sioning to users, while ensuring fault-tolerance, and optimizing both cost and performance.

We will first describe the existing design tradeoffs involved in creating ServerMix data analytics
systems. We will show that it is possible to modify core principles like disaggregation, isolation,
and simple scheduling to increase performance. But these changes may compromise the elasticity,
security, and even the pricing model and fast startup time of Serverless Functions. For example:

1. Relaxing disaggregation: Using locality in memory or function placement could boost perfor-
mance. Moving from a serverless data-shipping model to benefit from computation close to the
data could easily achieve performance improvements. But disaggregation is the fundamentall
pillar of elasticity in the Cloud.

2. Relaxing isolation: Co-locating related functions (namespaces) in the same containers, and
reusing containers could also improve performance. Providing direct communication between
functions could also facilitate shared replicated memory models. Leveraging lightweight con-
tainers or even using language-level constructs would also reduce cold starts and boost inter-
function communications. But isolation is the basis for multi-tenancy and security.

3. Flexible QoS and scheduling: To ensure SLAs it could be possible to implement more sophis-
ticated scheduling algorithms that can reserve resources or entire nodes to functions, or even
execute them in specialized hardware like GPUs. But simple location-agnostic scheduling is
the basis for reduced start times and increased cloud resource utilization.
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It is clear that these approaches would obtain significant performance improvements. But, de-
pending on the changes, such systems would be closer to Cluster computing or Cloud dedicated
resources (Serverful model) and they could be in direct opposition to the essence of serverless com-
puting.

In fact, we claim in this deliverable that the so-called "limitations" of the serverless model are
indeed its defining traits. When applications should require aggregation (computation close to the
data), relaxing isolation (co-location, direct communication), or tunable scheduling (predictable per-
formance, hardware acceleration) a suitable solution is to build a ServerMix.

We will demonstrate how the ServerMix model may be a good fit for Data Analytics applica-
tions. We advocate for (i) Smart Scheduling as a mechanism for providing transparent provisioning
to applications while optimizing the cost-performance tuple in the Cloud, (ii) Fine-grained State Dis-
aggregation thanks to Serverless Mutable Consistent State services, and (ii) Lightweight and Polyglot
Serverful Isolation: novel lightweight Serverful FaaS runtimes based on WebAssembly as universal
multi-language substrate.

CloudButton aims at the widest possible traction with the community. According to [25] only 20%
of enterprise workloads are in the public cloud. While more enterprise workloads are expected to
move to the public cloud in the coming years, it is reasonable to assume that a very large part of them
will either be deployed on premises or in a, so called, hybrid cloud deployment. For enterprise, the
defining transformation happening now is the cloud-native movement powered by the portable con-
tainers (e.g., Docker) and scalable intent-based container orchestrators (e.g., Kubernetes). A hybrid
cloud typically comprises a number of federated clusters on premises where the physical infrastruc-
ture is owned by the enterprise, complemented with an outreach to the public cloud(s). In the hybrid
cloud, especially, in its massive swaths of capacity, which is fully controlled by the enterprise itself,
the aforementioned principles of disaggregation, isolation, and simple scheduling can be relaxed to
a larger degree than what would be possible with the public cloud alone. In particular, a special-
ized data intensive FaaS oriented scheduling enforcing specific KPI goals can be deployed alongside
default Kubernetes scheduler, disaggregation can be mitigated by local caching, specialized run-
times relaxing isolation for internal users can be explored, and locality can be improved through the
cluster-wide and node-specific caching.

In CloudButton we intend to devise a flexible, agile and extensible architecture that would allow
to leverage the benefits of the hybrid cloud as well as adhering to the defining traits mentioned
above in a more strict manner when deployed in a public cloud. More details about our architectural
approach to achieve this twofold goal are provided in D3.1 (Section 4).

6.1 Tradeoffs of Serverless Computing

We will first outline three important tradeoffs of the Serverless model. Previous proposals [23] [24]
hinted that these tradeoffs could be relaxed to obtain more performance, but we will explain why
this could compromise essential aspects of the serverless model.

According to Amazon AWS [26], the four defining features of a serverless system are: no server
management, flexible scaling, pay for value, and automated high availability. No server management
implies that users do not need to provision or maintain any servers. Flexible scaling entails that the
application can be scaled automatically through units of consumption (throughput, memory) rather
than units of individual servers. Pay for value is to pay for the use of consumption units rather than
server units. And finally, automated high availability ensures that the system must provide built-in
availability and fault tolerance.

Let’s see how the tradeoffs may affect some of the defining features of serverless computing.
Dissaggregation is an essential element of cloud computing and the cornerstone for elasticity

and scalability. Disaggregation means separating the stateless computation services from the stateful
storage services, so that they can scale in an independent manner. And modern high speed networks
permit sub millisecond latencies between the compute and storage layers (even allowing memory
disaggregation like in InfiniSwap [27]). Serverless FaaS follows the same principle: stateless function
computation which can rely on scalable disaggregated storage services like Amazon S3.
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Three important papers already propose to relax disaggregation to increase performance. Heller-
stein et al. [23] even consider that one of the limitations of Serverless Computing is its Data Shipping
architecture that requires moving data to the functions. They propose the so called "Fluid Code and
Data Placement" where the infrastructure should be able to physically colocate certain code and data.
In a similar trend, [28] also proposed Fluid Multi-Resource Disaggregation which in fact consisted
of allowing movement (i.e.,fluidity) between physical resources to enhance proximity and thus per-
formance. Finally, [24], propose to allow functions to be co-located in the same VMs, and to share
data among them. At least, they recognize that this can go against the spirit of serverless computing,
since it would reduce the flexibility of cloud providers to place cloud functions, and thus resource
utilization.

But data locality and computation close to the data are old friends that are always at odds with
scalability and multi-tenancy. Computation close to the data, like Active Storage has not been adopted
in the Cloud because of its lack of scalability. Recent works like [29] demonstrate that active storage
computations may provoke resource contention and interference with the storage service. In a multi-
tenant scenario, computations from one user could harm the storage service to other users. Finally,
storage services are more difficult to scale up and down since they may need data movements like
resharding.

Ensuring locality for serverless functions would mean for example locating them in the same
node, and enabling fast shared memory between them. This would clearly improve performance
in applications such as machine learning, OpenMP, and PRAM algorithms. But this decision can
compromise flexible scaling, elasticity and fault-tolerance, and it would clearly require reservation
of dedicated resources to the experiment. This would require changes in the scheduling of functions
that would also compromise the model.

Simple Scheduling is another essential pillar of Serverless Computing. Cloud providers can en-
sure Quality of Service (QoS) and SLAs (Service Level Agreements) to different tenants by schedul-
ing the reserved resources and bill them appropriately. The goal of cloud scheduling algorithms is
to maximize the utilization of the Cloud resources while matching the requirements of the different
tenants.

In Serverless Faas, the tenant only specifies the memory size, while the function execution time
is severely limited. These reduced constraints considerably simplify the best effort scheduling of
functions, helping Cloud providers to maximize utilization and even place them in old equipment. It
is also well known by users that functions may suffer interferences from other services and functions,
and even suffer cold starts.

To improve performance, a clear candidate would be to work on more sophisticated scheduling
algorithms that would guarantee dedicated resources (i.e. hardware acceleration, GPUs), enforce lo-
cality, or optimize the placement of functions. In this case, tenants could detail resource requirements
for their experiments or applications, and the scheduler would optimize the resource allocation for
each tenant.

Again, the three aforementioned papers, propose similar ideas to provide predictable perfor-
mance in serverless settings. In [28] they propose Fine-grained Live Orchestration, involving sophis-
ticated allocation of resources as well as orchestrating the fluidity of resources (like the decision to
move computation between nodes). In [23], they advocate for heterogeneous hardware support for
functions where developers could specify their requirements in DSLs, and the cloud providers would
then calculate the most cost-effective matchings to meet user SLOs. This would guarantee the use
of specialized hardware for functions. In [24], they also support this claim for serverless computing
to support hardware heterogeneity. They propose that serverless could embrace multiple instance
types (with prices according to hardware specs), or that cloud providers may select the hardware
automatically depending on the code (like GPU hardware for CUDA code and TPU hardware for
TensorFlow code).

Again, tuning scheduling to improve performance could compromise flexible scaling, elasticity
and even complicate the high utilization of resources to the Cloud provider. Putting more constraints
on scheduling of functions could then lead to a change in the pricing model of such kind of functions
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requiring dedicated resources.
Isolation is another pillar of multi-tenant clouds services. Isolation guarantees security, privacy,

and fair use of resources among the different tenants. Existing multi-tenant resource allocation mech-
anisms are based either on per-VM allocations or hard rate limits that rely on uniform workloads to
obtain high utilization. Isolation is also an important mechanism to avoid interferences between the
different tenants accessing the shared resources.

Let us review what previous works are proposing here:
In [28], they propose a concept named coordinated isolation, in which isolation is extended across

multiple servers (where the functions of the same user are executed). This goes beyond the current
model where isolation is guaranteed for single function executions. They clearly see this concept as
the basis for fluid dissaggregation and for fine grained orchestration of resources.

In [23], they are proposing two ways of relaxing isolation: (i) the previously explained fluid code
and data placement, and (ii) direct communication and addressing. In particular, they claim that
Serverless stymies distributed computing due to this lack of direct communication among entities.
They advocate for long-Running, Addressable Virtual Agents offering public "ports" to other entities.

To increase performance, and reduce the overheads of creating and configuring isolated environ-
ments (cold starts), there are numerous efforts to offer lightweight isolation mechanisms. Several
examples are Amazon Firecracker, Google gVisor [30], CloudFlare Workers with WebAssembly [31]
or optimized containers like SOCK [32].

Another technique to increase performance is to relax isolation and co-locate functions in the the
same VMs or containers. Or even to provide very lightweight language-level constructs to reuse
containers as much as possible. This can make sense for functions belonging to the same tenant,
since it would heavily reduce cold starts and function compositions.

Finally, it could also be possible to enable direct communication between functions of the same
tenant. In this case, direct communication would permit a variety of distributed communication
models, allowing for example the construction of replicated shared memory between functions.

But again, relaxing isolation may compromise security and privacy, but also resource manage-
ment and scheduling between different tenants. And things can be even more entangled. Locality
(relaxing disaggregation) could require relaxed isolation with in turn may compromise elasticity and
fault tolerance.

As a summary, we refer to Figure 12 as a global view of the overall tradeoffs. Disaggregation,
isolation, and simplified scheduling guarantee respectively the flexible scaling, multi-tenancy, and
reduced startup time of functions.

Figure 12: Tradeoffs

Reducing disaggregation means locality and computation close to the data, which can entail clear
performance improvements. But then we will be sacrificing elasticity and complicating scheduling
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and also probably reducing isolation. The more you move to the left, the closer you are to serverful
computing or running VMs or clusters in the Cloud.

With isolation the effect is similar. Since isolation is the key to multi-tenancy, sacrificing isolation
completely leads you to dedicated resources. In your dedicated VMs, containers, or clusters (server-
ful), you can run functions very fast without caring about sandboxing and security. But this also
entails more complex scheduling and different pricing.

Finally, simple scheduling and agnostic function placement is also inherent to serverless comput-
ing. But if you require Quality of Service, SLAs or specialized hardware, the scheduling and resource
allocation gets more complex. Again, moved to the extreme, you end up in serverful settings which
already exist (dedicated resources, VMs, or clusters). Serverless cost efficiency is further discussed in
Deliverable D3.1.

Probably the most interesting conclusion of this figure is the region in the middle, which we
call ServerMix computing. The zone in the middle involves applications that will be constructed
combining both serverless and serverful computing models. In fact, as we will review in the next
section, many existing so-called serverless applications may be considered servermix according to
our definition.

6.2 State of the Art

We can consider that most research in Serverless Data Analytics can be classified as ServerMix, since
we will see that those systems combine both Serveless and Serverful components.

In general, most systems rely on a external (serverful) provisioner component that is in charge of
launching and orchestrating serverless functions using the APIs of the Cloud provider. Sometimes
the provisioner is called coordinator or scheduler, but the task is the same, orchestrate functions and
provide fault-tolerance.

As we will see, some systems require additional serverful components to overcome the limitations
of the Serverless model. For example, disaggregated in-memory systems like Redis ElastiCache to
overcome the throughput and speed of disk-based storage like S3 (see Locus). Or even external
communication or coordination services to enable the communication among functions through a
disaggregated intermediary (see ExCamera).

Table 7: ServerMix applications

Systems
Components

Serverful Serverless

Locus Scheduler, Redis Lambda Functions, S3

PyWren Scheduler Lambda Functions, S3

IBM PyWren Scheduler IBM Cloud Functions, COS,
RabbitMQ

ExCamera Coordinator, Rendezvous Lambda Functions, S3

Flint Scheduler Lambda Functions, S3, SQS

NumPyWren Provisioner Lambda Functions, S3

Cirrus Scheduler, Parameter Servers Lambda Functions, S3

PyWren [22] is a proof of concept that MapReduce tasks can be executed as serverless functions.
PyWren is combining a serverful function scheduler (client application) that orchestrates functions
and launch the required mappers as Lambda functions. PyWren uses S3 for storing intermediate
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results, but also for function coordination since they actively pull S3 to detect that all results have
been uploaded.

IBM-PyWren [33] is a PyWren derived project which adapts and extends PyWren for IBM Cloud
services. It includes a a number of new features, like broader MapReduce support, automatic data
discovery and partitioning, integration with notebooks, and simple function composition, among
others. IBM-PyWren also boosts PyWren performance by using RabbitMQ to avoid unnecessary
polling to the Object Storage service.

ExCamera [21] performs digital video encoding leveraging the parallelism of thousands of Lambda
functions. Again, ExCamera is using serverless components (Lambda functions, S3) and serverful
ones (coordinator, rendezvous). In this case, apart from a coordinator/scheduler component that
launches functions, they also need a rendezvous service for communication and coordination be-
tween functions.

Flint [34] implements a serverless version of the PySpark MapReduce framework. It is similar
to PyWren in the use of an external scheduler (serverful) to orchestrate lambda functions, and S3 to
store intermediate results. But Flint also uses SQS service for coordination.

The same pattern is again followed by NumPyWren Linear Algebra library [35] since it is based
in PyWren. Again it relies on a scheduler and S3 for storing results.

Cirrus Serverless Machine Learning project [24] is again an hybrid combining some serverful
components (parameter servers, scheduler) and serverless ones (Lambda, S3).

Finally, the most recent and related ServerMix related work is Locus [36]. They target one of
the clear limitations of the serverless stateles model, shuffling in Map Reduce, or sorting data is not
ideally suited for stateless functions. In [22] they already executed some shuffles in PyWren using 30
Redis ElastiCache servers.This proved to be an expensive solution.

In Locus, they try to provide a hybrid solution (ServerMix) that takes into account both cost
and performance. In this line they minimize the use of the expensive Redis in-memory system and
complements it with the cheaper S3 service.

We did not include SAND [37] in the list of ServerMix systems since it is mainly proposing a
new runtime for Serverless Faas. They present an alternative High Performance Serverless Platform
and they compare it with OpenWhisk. To improve performance they basically relax disaggregation
introducing locality in their runtime (local message bus) and relax isolation through application level
sandboxing. They do not analyze or evaluate how these changes could affect the scalability, elasticity
or security of their solution.

Recent works also outline the need for novel serverless services providing flexible disaggregated
storage to serverless functions. This is the case of Pocket [38] ephemeral storage service, which pro-
vides auto-scaling and pay-per-use as a service to serverless functions.

In the same line, [24] propose as a future challenge the creation of High-performance, afford-
able, transparently provisioned storage. They propose two services: Serverless Ephemeral Storage
and Serverless Durable Storage that should provide micro-second latencies, multi-tenant workloads,
fault-tolerance, auto-scalable and providing transparent provisioning. They suggest that with a
shared in-memory service, any memory not used by one serverless application can be allocated to
another in a multi-tenant scenario. They also explain that existing services like Redis or MemCached
do not fulfill the aforementioned requirements. In this line, they can both be considered Serverful
due to their explicit provisioning, and dedicated resources to one tenant.

Another interesting alternative could be to use FaaS Serverless Orchestration services to coordi-
nate/provision the Data Analytics applications. In [39] we recently compared three different Server-
less Orchestration mechanisms: Amazon Step Functions [40], Azure Durable Functions [41], and
IBM Composer [42]. But our conclusion was that they are still young projects that are not designed
to orchestrate massively parallel function computations (like MapReduce dataflows). IBM Composer
recently improved their support for parallel function execution and in a future it could become a se-
rious alternative.

As we can see, if Data Analytics applications could leverage serverless orchestration and server-
less in-memory services, this table could change and many projects could avoid the use of serverful
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entities. This would clearly create more native applications with consistent fault-tolerance models
entirely provided in the cloud.

The reality is that in fact several providers are also transitioning to hybrid models combining
serverless and serverful concepts. We already see how some providers like Azure already provide
ServerMix FaaS services like Azure Premium Plan for Functions that run on dedicated machines
while abstracting the provisioning phase. And Azure is even allowing users to pre-warm functions
to reduce their cold starts.

Hybrid Cloud technologies are also accelerating the combination of serverless and serverful com-
ponents. In this line, the deployment of Kubernetes Clusters in different Clouds can even overcome
portability issues among providers. For example, Amazon is offering Amazon EKS Elastic Container
Service for Kubernetes [43], Google is offering Google GKE (Google Kubernets Engine) [44], and
Azure is offering Azure AKS (Azure Kubernetes Service) [45]. But the three of them (EKS, GKE,
AKS) cannot be considered serverless since tthey require some management, scaling, and provision-
ing of the cluster.

A very interesting recent trend is the emergence of the so-called serverless container services like
AWS Fargate [46], Azure Container Instances [47], and Google Cloud Run [48]. These services reduce
the complexity of managing and deploying Kubernetes clusters in the Cloud. They offer serverless
features like flexible automated scaling and pay-per-use, while they still require some provisioning
and configuration of the required resources and scaling limits.

Serverless container services are interesting for long-running jobs like batch data analytics, while
they offer more control over the applications thanks to the use of containers instead of functions. In
any case, they can be very suitable for stateless scalable applications where the services can scale-
out easily adding or removing container instances. In this case, the user establishes a simple CPU or
memory threshold and the service is responsible of monitoring, load balancing, and instance creation
and removal. But if the service or application is more complex (like a stateful storage component)
their potential use is very limited or requires more user intervention.

For example, AWS Fargate [46] offers two models: Fargate launch type and EC2 launch type. The
former is more serverless and requires less configuration, while the latter gives you more control
but also more responsibility and different pricing models. An analogous thing occurs with Google:
Cloud Run vs Cloud Run on GKE model, the former is automated and uses standard vCPUs, while
the latter enables you to select hardware requirements and configure and manage your cluster.

An important open source project related to serverless containers services is CNCF’s KNative [49].
KNative is backed by Google, IBM and RedHat among others, and it simplifies the creation of server-
less containers over Kubernetes Clusters. Knative simplifies the complexity of Kubernetes and Istio
service mesh components, and it creates a promising substrate for both PaaS and FaaS applications.
Google Cloud Run is based on Knative and IBM Cloud is also offering seamless Knative integration
in their Kubernetes services.

As a final conclusion, we foresee that the simplicity of the serverless model will gain traction
among users, so many new offerings may emerge in the next years blurring the borders between
both Serverless and Serverful models. As we will explain later, serverless container services may
become an interesting architecture for servermix deployments.
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7 General objectives
This work has been produced in the context of the European Research project "CloudButton: Server-
less Data Analytics" [50]. CloudButton is a three-year european research project (2019-2022) including
key industrial partners like IBM, RedHat, and Atos, academic partners like Imperial College London,
Institute Mines Telecom, and Universitat Rovira i Virgili, and use cases like EMBL, Pirbright Institute,
Answare and Fundacion Matrix. To demonstrate the impact of the project, we target two settings with
large data volumes: bioinformatics (genomics, metabolomics) and geospatial data (LiDAR, satellital).

This project is inspired by the "Occupy the Cloud paper" [22] in which they refer to the following
sentence from a professor of computer graphics at UC Berkeley : “Why is there no cloud button?”
He outlined how his students simply wish they could easily “push a button” and have their code –
existing, optimized, single-machine code – running on the cloud.”

Our main goal is to create CloudButton: a Serverless Data Analytics Platform. CloudButton
will “democratize big data” by overly simplifying the overall life cycle and programming model.
To this end, CloudButton will convert and deploy existing code to the Cloud thanks to serverless
technologies.

While serverless computing is considered to be Cloud Computing’s next step, the challenges in
moving toward serverless still remain one of the major obstacles for a wider adoption. Adapting
existing applications to serverless is not a trivial process, but usually requires application redesign,
new code development and learning new APIs. The same is true for developing new applications
over serverless, as this also requires learning new deployment and development skills.

In CloudButton we would like to take this further and explore more options to ease serverless
integration into existing code and frameworks. We plan to address the challenge on how to tran-
sition existing code and frameworks to serverless settings without the painful process of starting
from scratch and or learning new skills. We explore the challenges involved to integrate existing
applications and frameworks with serverless. Instead of redesigning existing applications, our goal
is to explore how to scale certain code parts without rewriting and modifying existing applications.
Understanding the impact of such approach will facilitate user adoption and allow applications to
automatically perform flexible scaling on demand. Our final goal is to improve and simplify the user
experience as much as possible.

To achieve these ambitious objectives, CloudButton defines the following goals:

• Create a High Performance Serverless Compute Engine for Big Data: This is the foundational
technology for the CloudButton platform that must overcome the current limitations of existing
serverless platforms. In particular, it includes extensions to i) support stateful and highly per-
formant execution of serverless tasks, ii) optimized elasticity and operations management of
functions thanks to new locality aware scheduling algorithms, iii) efficient QoS management of
containers that host serverless functions, and iv) a Serverless Execution Framework supporting
typical dataflow models.

• Support for Mutable Shared Data in Serverless Computing: To simplify the transitioning from
sequential to (massively-)parallel code, we will design of a new middleware that allows to
quickly spawn and share mutable data structures in a serverless computing platform. Our Mu-
table Shared Data middleware will i) offer an easy-to-use programming framework to add state
to serverless computing, ii) provide dynamic data replication and tunable consistency to match
the performance requirements of serverless data analytics, and iii) integrate this framework to
an in-memory data grids for performance.

• Design novel Serverless Cloud Programming Abstractions: The overall objective is to provide
a new programming model for serverless cloud infrastructures that can express a wide range
of existing data-intensive applications with minimal changes. The programming model should
at the same time, i) preserve the benefits of a serverless execution model in terms of resource
efficiency, performance, scalability and fault tolerance, ii) explicit support for stateful functions
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in applications, while offering guarantees with respect to the consistency and durability of the
state.

7.1 High Performance Serverless Run-time

In many real-life cloud scenarios, enterprise workloads cannot be easily moved to a centralized public
cloud due to the cost, regulation, latency and bandwidth or a combination of these factors. This forces
enterprises to adopt hybrid cloud.

However, current serverless frameworks are centralized. Out of the box, they do not know how
to leverage computational capacity available in multiple locations. Another gap in the current server-
less computing engines implementations is their obliviousness to serverless functions QoS. In fact,
serverless functions are treated uniformly even though performance and other non-functional re-
quirements might differ dramatically from one workload to another.

Big Data analytics pipelines (also referred to as workflows) need to be efficiently orchestrated.
There exist many serverless workflows orchestration tools [51, 52, 53, 54, 55], ephemeral serverless
composition frameworks [42], and stateful composition engines [40, 41]. To the best of our knowl-
edge, the workflow orchestration tools treat the FaaS run time as a black box oblivious to the work-
flow structure. This approach, while gaining in portability, has drawbacks related to performance,
because an important information related to scheduling of the serverless functions that can be in-
ferred from the workflow structure is not shared with the FaaS scheduler.

A major issue with FaaS, which is exacerbated in a multi-stage workflow, is the data shipment
architecture of FaaS. Usually, the data is located in a separate service, such as Cloud Object Store
(COS) and is shipped for computation to the FaaS cluster. Likewise, the output of the previous FaaS
function(s) that might serve as input to the subsequent function(s) in the flow is re-shipped anew and,
in general, FaaS functions are not scheduled with data locality in mind, even though data locality can
be inferred from the workflow structure.

Also, to the best of our knowledge, none of the existing workflow orchestration tools is serverless
in itself. In other words, the orchestrator is usually a statefull always on service. This is not neces-
sarily the most cost-efficient approach for the long running big data analytics pipelines that might
have periods of very high peakedness requiring massive parallelism interleaved with long periods
of inactivity.

Last, but not the least, in a servermix model, which realistically assumes both serverless and
non-FaaS components, the cost effectiveness of the whole pipeline depends on the time utilization
of a component. Smart provisioning that helps selecting FaaS vs non-FaaS is required to improve
cost-efficiency.

In CloudButton we will address the above challenges as follows.

• Federated FaaS Model: CloudButton will exploit K8s federation architecture to provide a struc-
tured multi-clustered FaaS run time to facilitate analytics pipelines spanning multiple K8s clus-
ters. The FaaS frameworks that we plan to extend to fit the federated architecture are CNCF
Knative and Apache OpenWhisk with public cloud FaaS offerings pluggable to the system,
albeit with much less control over scheduling, as explained above.

• SLA, QoS and Scheduling: a programmer will be enabled to specify desired QoS levels for
the functions that will be enforced by a specialized scheduler (implemented via the K8s custom
scheduler framework). This scheduler will also take the structure of a workflow into account
and use this information to improve performance by e.g., pre-warming containers, pre-fetching
data, caching data from previous stages, and burst to remote clusters, when local capacity is
exhausted. SLA corresponding to the specific QoS will be monitored and enforced.

• Servermix Workflow Orchestration: CloudButton will develop serverless orchestration frame-
work for servermix big data analytics pipelines by extending mature native K8s tools, e.g.,
Argo [52]. Tasks in the servermix workflow might include massively parallel serverless com-
putations, such as, e.g., PyWren. The orchestrator will take care of PyWren invocation restarts,
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traffic shaping (e.g., how many per time unit), completion handling, etc. moving the burden of
orchestration from the PyWren client to the platform and leaving PyWren with the application
related tasks, such as smart data partitioning.

• Operational Efficiency: an operations cost-efficiency advisor will observe the time utilization
of a servermix components and form recommendations on the more appropriate paradigm for
every component. For example, a component, which is in constant use, might be more cost-
efficiently provided and operated as a serverful one rather than FaaS, while a component uti-
lized below some break-even point depending on the cost of the private infrastructure and/or
public cloud services can be more efficiently operated using the serverless approach.

7.2 Mutable Shared Data for Serverless Computing

In the context of big data, workloads abide to what we would call storm computing, where thousands
of serverless functions happen in a brief period of time. From a storage perspective, this requires the
ability to scale abruptly the system in order to be on par with demand. To achieve this, it is necessary
to shrink the startup time (e.g., with unikernels [56]) and consider new directions for data distribution
(Pocket [38] for instance uses a central directory and provisions storage nodes in advance).

Current serverless computing platforms outsource state management to a dedicated storage tier
(e.g., AWS S3). This tier is agnostic of how data is mutated by functions, requiring data (de-)serialization
in serverless functions. Such an appraoch is cumbersome for complex data types, decreases code
modularity and re-usability, and increases the cost of manipulating large objects. In contrast, we ad-
vocate that the storage tier supports in-place modifications (similarly to what DBMS systems offer
with stored procedures [57]).

Serverless computing infrastructures have additional key requirements on the storage tier to per-
mit efficient big data manipulations. This includes (i) fast access (sub-millisecond) to ephemeral
mutable data in order to support iterative and stateful computations (e.g., ML algorithms); (ii) fine-
grained operations to coordinate concurrent function invocations (similarly to coordination kernels
[58]); and (iii) dependability to transparently support failures in both storage and compute tiers.

In CloudButton, we envision to tackle the above challenges by designing a new storage layer for
stateful serverless computation. Our end goal is to simplify at most transitioning from sequential to
massively-parallel code. This requires to advance the state of the art on several key questions in data
storage and distributed algorithms. Below, we list the features that we aim to achieve in the storage
system.

• Language support for mutable shared data. The programmer can declare mutable shared
data types in a piece of serverless code. This declaration is integrated transparently to the
programming language (e.g., with the help of annotations). The storage tier knows the data
types, allowing in-place mutations. Furthermore, these data types are composable and sharded
transparently for performance.

• Tunable data consistency. Shared objects are distributed and replicated across the storage
tier. Strong consistency maintains application’s sequential invariants but performance gen-
erally suggests to use weaker consistency models [59, 60]. To reconcile ease of programmation
and performance, the programmer can degrade data consistency. This degradation is controlled
at the level of individual object and integrated to the langague support.

• Just-right synchronization. Each object is implemented using state machine replication atop a
consensus layer [61, 62]. This layer is adptable and self-adjusts to the consistency of each shared
data item. Doing this, data replicas synchronize only when necessary, transforming consistency
degradation into performance.

• In-memory data storage. Shared data is stored in-memory and overflows to external storage
(e.g., filesystem, database, etc) when it is tagged as persistent (for instance, the centroids at
the end of a k-means clustering). To cope with the short-lived highly-demanding nature of the
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workload, (i) data distribution is computed before computation occurs; (ii) persistent and in-
memory data nodes collaborate; and (iii) storage adapts replication and locality on-the-fly with
the help of an external orchestrator.

7.3 CloudButton toolkit

Containers are the foundation of serverless runtimes, but the abstractions and isolation they offer
can be restrictive for many applications. A hard barrier between the memory of colocated functions
means all data sharing must be done via external storage, precluding data-intensive workloads and
introducing an awkward programming model. Instantiating a completely isolated runtime environ-
ment for each function is not only inefficient, but at odds with how most language runtimes were
designed.

This isolation boundary and runtime environment have motivated much prior work. A com-
mon theme is optimising and modifying containers to better suit the task, exemplified by SOCK
which makes low level changes to improve start-up times and efficiency [32]. Others have sacrificed
isolation to achieve better performance, for example by colocating a tenants’ functions in the same
container [37]. A few frameworks for building serverless applications have emerged [22, 34, 21], but
these have clearly required a lot of engineering and porting existing applications is labour-intensive.

Software fault isolation (SFI) has been proposed as an alternative isolation approach, offering
memory-safety at low cost [63]. Introducing an intermediate representation (IR) to unify the range of
languages used in serverless has also been advocated [23]. WebAssembly is perfectly suited on both
counts. It is an IR built on the principles of SFI, designed for executing multi-tenant code [64]. This
is evidenced by its use in proprietary serverless technologies such as CloudFlare Workers [31] and
Fastly’s Terrarium [65].

With the CloudButton Toolkit we will build on these ideas and re-examine the serverless pro-
gramming and execution environment. We will investigate new approaches to isolation and abstrac-
tion, focusing on the following areas:

• Lightweight serverless isolation. By combining SFI, WebAssembly and existing OS tooling we
will build a new isolation mechanism, delivering strong security guarantees at a fraction of the
cost of containers. This will be the foundation on which we construct the rest of the toolkit.

• Efficient localised state. This new isolation approach allows sharing regions of memory be-
tween colocated functions, enabling low-latency parallel processing as well as new opportuni-
ties for inter-function communication. We will build on this to tackle data-intensive workloads
and investigate how our scheduling can benefit from colocation.

• Stateful programming abstractions. To make CloudButton programming seamless, we will
create a new set of abstractions, allowing users to combine stateful middleware with efficient
localised state to easily build high-performance parallel applications.

• Serialisable execution state. WebAssembly’s simple memory model makes it easy to serialise
and resume a function’s execution state. We will create a checkpoint, migrate and restore mech-
anism to make horizontal scaling across hosts transparent to the user.

• Polyglot libraries and tooling. By using a shared IR we can reuse abstractions across multiple
languages. In this manner we will build a suite of generic tools to ease porting existing appli-
cations in multiple languages, including the CloudButton genomics and geospatial use-cases.
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8 CloudButton Architecture
In theory, serverless data analytics applications could be designed using pure serverless services in
the Cloud. For example, embarrassingly parallel map-reduce jobs could be developed only relying
on serverless orchestration technologies, serverless functions, and serverless Object Storage.

But the reality is that serverless orchestration services [39] are in their infancy and they do not
adequately manage parallel workloads. Furthermore, there is a clear lack in cloud providers for
serverless fine-grained mutable state services, and for high performance serverless coordination and
communication services to support Stateful Big Data Analytics tasks like distributed machine learn-
ing.

Figure 13: Software Architecture

For these reasons, the CloudButton project is going to leverage serverless container technologies
using Kubernetes and the CNCF Knative software stacks. The major advantage of these technologies
is that they will permit a straightforward portability of our results to a variety of Cloud providers.

The overall software architecture of the project is shown in Figure 13. Data Analytics applica-
tions may use imperative programming libraries (for example Jupyter notebooks accesing mapre-
duce tasks) or declarative Big Data pipelines modelled as Direct Acyclic Graphs (for example using
Airflow or Kubeflow DAGs). The CloudButton Core will facilitate the deployment of data analytics
code to Serverless functions and serverless containers. CloudButton Core will interact with container
orchestration and resource scheduling systems such as Argo and Kubernetes schedulers to offer au-
tomated smart provisioning to applications.

Furthermore, the flexibility of container technology will enable us to easily integrate advanced
components like Infinispan Mutable State Middleware, or WebAssembly specialized FaaS runtimes.
Like we see in the Figure, the CloudButton Core abstracts away the access to heterogeneous runtimes
executed in K8s clusters. Our smart provisioning policies will also be capable of selecting advanced
hardware resources like GPUs or large memory and computing containers to boost some data ana-
lytics experiments.
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Figure 14: Servermix over K8s integrating heterogeneous runtimes

A key contribution of the CloudButton project will be the smart provisioning of Big Data Appli-
cations in serverless containers. Smart provisioning will aim to overcome the “No server Manage-
ment” limitation of container technologies, by transparently managing and provisioning the required
resources for the Big Data Experiments.

An important outcome is to design novel smart provisioning algorithms that optimize cost/per-
formance for data analytics applications. Chosing the right serverful instances or hardware acceler-
ators in a transparent or semi-transparent way to users will deserve a lot of research depending on
the problems, datasets, and programming models. As stated in [24] , one approach is that developers
explicitly state their requirements, data dependencies, or even data flows. For example, a KMeans
clustering execution over a 1 TB dataset can automatically provision the required function and shared
memory resources (Infinispan servers) for the experiment. Another more sophisticated approach is
to automatically infer requirements analyzing source code or data dependencies.

Another interesting outcome is smart scheduling. The orchestration service keeps very valuable
information about the workflows and function invocations in the state machine of a workflow. This
can be smartly used to prewarm functions, prefetch data, or reserve resources in an efficient way.
They can also provide consistent fault tolerance support that is not normally present in container
technologies. But as we said, more meta-information is needed in this kind of services, not only the
state machine, but also data dependencies (input, output), data formats, libraries, and even SLOs
or performance/cost tradeoffs. For example, a smart scheduling decision could also entail changing
the underlying FaaS runtime for a lightweight one offering function co-location. In CloudButton
Core, our orchestrator could then decide to execute an application over a WebAssembly container in
a transparent way for the end-user.
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8.1 Initial Specifications and Software components

Let us describe the different software components of the CloudButton Architecture. The unifying
framework for all components is the serverless cluster using CNCF K8s technologies.

• Serverless Infrastructure (OpenWhisk, KNative, Prometheus): IBM and ATOS will collaborate
on smart scheduling and provisioning creating novel Kubernetes Schedulers adapted to Server-
less Data Analytics. They will optimize both cost and performance for Big Data experiments
deployed in the Cloud.

• Serverless Orchestration (Airflow, Kubeflow, Argo): IBM and URV will work together in cre-
ating new tools enabling the orchestration of Big Data pipelines over serverless functions and
containers. The tools will provide declarative DAGs (Directed Acyclic Graphs) for the defini-
tion of the pipelines. Such DAGs will be leveraged by the underlying Serverless Infrastructure
to optimize resource usage. We will extend Apache Airflow with new FaaS Big Data Operators
and also leverage and adapt Argo for Big Data pipelines on serverless containers.

• Mutable State Middleware (Crucial, Infinispan): IMT, URV, and RHAT will create a novel disag-
gregated mutable middleware including consistent data structures and programming abstrac-
tions for stateful Big Data analytics over Infinispan. We will offer proof of concept machine
learning algorithm packaged as Functions that can be executed and orchestrated by CloudBut-
ton Core in a K8s cluster. RHAT will integrate Infinispan and this middleware in the K8s stack,
and it will provide controllers for flexible auto-scaling of ephemeral and replicated Infinispan
cluaters.

• WebAssembly FaaS Runtime and programming abstractions: Imperial will create a novel light-
weight and polyglot FaaS runtime over WebAssembly technology. This middleware will offer
code-shipping models where lighweight functions can be colocated and access local shared
memory in an efficient way. This FaaS runtime must be integrated in the K8s stack.

• CloudButton toolkit: The CloudButton toolkit will be created between Imperial, IBM, IMT, and
URV and it will become the front-end of the project. Data analysts and practitioners will use
the toolkit to realize the "push the button" objective of the project. The toolkit will include a
number of technologies targeted to end-users. It will leverage existing tools like IBM PyWren,
Jupyter notebooks, Airflow, KubeFlow, and many others to demonstrate both semi-transparent
and fully transparent transition to serverless data analytics.

8.1.1 Infinispan

Infinispan is a distributed in-memory key/value data store with optional schema, available under
the Apache License 2.0. It is available as an embedded Java library or as a language-independent
service accessed remotely over a variety of protocols (Hot Rod, REST, Memcached). Its main uses are
as a cache or a data grid, employing advanced functionality such as transactions, events, querying,
persistence, distributed processing, off-heap and geographical failover. Infinispan can transparently
be scaled up and down by adding and removing nodes dynamically, while still being operational.
Infinispan automatically rebalances data to maintain similar memory usage across all nodes in the
cluster. The dynamic discovery of new nodes works on Kubernetes, AWS, Azure, Google Cloud and
OpenShift in bare-metal, containerized and virtualized environments. Monitoring and management
of the cluster can be achieved through JMX, a CLI, a web-based console as well as, in more limited
form, through the access protocols. A Kubernetes-based operator is also available which handles
easy configuration, deployment, autoscaling and maintenance with as little user-intervention as pos-
sible. Infinispan integrates with JPA, JCache, Spring, Spark and many more. Clients for the Hot Rod
protocol are available for Java, C++, C# and Node.js.

The following is a list of resources which describe the various components that make up Infinis-
pan:
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• The main Infinispan website which includes download links, documentation, examples and
tutorials: https://infinispan.org

• Docker images for Infinispan Server: https://hub.docker.com/r/jboss/infinispan-server

• The Infinispan Kubernetes Operator: https://operatorhub.io/operator/alpha/infinispan-operator.
v0.2.1

• Source repositories

– Infinispan https://github.com/infinispan/infinispan/

– Infinispan Docker image https://github.com/jboss-dockerfiles/infinispan

– Infinispan Kubernetes Operator https://github.com/infinispan/infinispan-operator

8.1.2 Serverless infrastructure: Monitoring and SLA management

Monitoring is an essential building block for resource management and performance modelling for
any system. Monitoring allows collecting metrics at multiple levels: computing infrastructure, stor-
age systems and application levels developing system’s observability which permits to understand
its behavior. Collected information by means of monitoring becomes actionable data permitting to
act in diverse undesirable system deeds: among others allowing to guarantee certain performance
levels, to enable infrastructure elasticity and to facilitate fault tolerance. CloudButton’s Serverless
infrastructure will rely on widely used tools in order to provide this indispensable functionality. At
this stage evaluated tools comprise Prometheus [66] and Grafana [67]. Prometheus is a Cloud Native
Computing Foundation project fully integrated with Kubernetes with wide base of existing metrics
and allowing extensibility by defining new metrics and data exporters. Prometheus is often inte-
grated with Grafana to visualize gathered metrics.

SLA Management Service Level Agreements (SLAs) has been a mechanism used for manag-
ing QoS in multiple cloud research distributed environments [68]. At the same time, public Cloud
providers are often criticized because solely considering availability as measurement of the perfor-
mance being offered to their customers. Mechanisms to enable to expand performance metrics in
Cloud providers beyond availability, as well as, to let application of penalties for the provider in the
case of not fulfilling desired performance qualities, are becoming crucial in serverless architectures
[23]. In this context CloudButton will rely on an existing SLA management framework REF SLA
which will be extended with novel functionalities to be employed in this context. The exiting compo-
nent provides a mechanism to support SLA Management lifecycle considering mechanism and tools
for Service definition based on diverse Service Level Objectives (SLOs) in addition to assessment,
enforcement and accounting of SLAs. These will work in close cooperation with Monitoring tools, in
order to allow SLA enforcement to act in case of not satisfying agreed performance metrics. Specif-
ically for CloudButton novel functionalities are evaluated in order to support diverse service levels
at Service definition phase. These can include embracing diverse isolation degrees requirements as
well as requirements for execution in heterogeneous hardware. Moreover, capabilities in relation to
predictability on SLA performance will be explored as part of SLA Enactment phases.

Source repositories (private to Atos at this stage):

• SLALite: https://gitlab.atosresearch.eu/ari/SLALite

• SLALite Docker image: https://gitlab.atosresearch.eu/ari/SLALite/tree/master/docker
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9 Conclusions
In this deliverable, we presented the experiments that will be used to validate the CloudButton plat-
form, alongside with the project vision and an initial specification of the architecture.

In our view, the achievements of this deliverable represent a remarkable step towards the cre-
ation of a Serverless Data Analytics Platform. Furthermore, the progress of the project and the tight
collaboration among partners draws promising milestones in the horizon. In particular, we outline
the following innovative aspects that are related to the future architectural aspects of CloudButton:

• Smart provisioning of resources for data analytics applications to optimize both cost and per-
formance.

• Smart scheduling of data analytics workflows to improve the efficiency of the serverless plat-
form.

• A serverless machine learning library that leverages novel data structures and programming
abstractions provided over a shared mutable state middleware.

• A common front-end targeted at end-users (data analysts and practitioners) that fulfills the
promise of transparent execution of data analytics workloads in the cloud.

Page 48 of 52



H2020 825184 RIA
24/07/2019 CloudButton

References
[1] “FAANG website.” http://data.faang.org/home, 2019.

[2] F. c. L. Andersson, ..., “Coordinated international action to accelerate genome-to-phenome with
FAANG, the Functional Annotation of ANimal Genomes project,” Genome Biology, 2015.

[3] “FAANG dataset website.” https://www.animalgenome.org/community/FAANG/index, 2019.

[4] E. D. T. Lappalainen, ..., “Transcriptome and genome sequencing uncovers functional variation
in humans,” Nature, 2013.

[5] “ENA website.” https://www.ebi.ac.uk/ena/browse/download, 2019.

[6] “ICGC website.” https://icgc.org, 2019.

[7] “ICGC data access policy.” https://docs.icgc.org/download/data-access, 2019.

[8] “SAM specification.” https://samtools.github.io/hts-specs/SAMv1.pdf, 2019.

[9] R. G. P. R. S. Marco-Sola, M. Sammeth, “The gem mapper: fast, accurate and versatile alignment
by filtration,” Nature Methods, 2012.

[10] E. Maderal, N. Valcarcel, J. Delgado, C. Sevilla, and J. Ojeda, “Automatic river network extrac-
tion from lidar data.,” International Archives of the Photogrammetry, Remote Sensing & Spatial
Information Sciences, vol. 41, 2016.

[11] P. C. Pandey, N. Koutsias, G. P. Petropoulos, P. K. Srivastava, and E. B. Dor, “Land use/land
cover in view of earth observation: data sources, input dimensions and classifiers - a review of
the state of the art,” Geocarto International, vol. ePub ahead of print, 2019.

[12] IGN, “Centro Nacional de Información Geográfica.” http://centrodedescargas.cnig.es/
CentroDescargas/index.jsp, 2019.

[13] “Copernicus.” https://scihub.copernicus.eu/.

[14] “Siam.” http://siam.imida.es/apex/f?p=101:1:8786098632739315.

[15] “Aemet.” http://www.aemet.es/es/portada.

[16] “Ministry of ecological transition.” https://www.miteco.gob.es/es/cartografia-y-sig/ide/
descargas/biodiversidad/enp.aspx.

[17] “Python.” https://www.python.org/.

[18] “Qgis.” https://www.qgis.org.

[19] “Pyqgis.” https://qgis.org/pyqgis/3.0/.

[20] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference on
document analysis and recognition, vol. 1, pp. 278–282, IEEE, 1995.

[21] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-
man, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’17), 2017.

[22] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed com-
puting for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC’17,
2017.

Page 49 of 52

http://data.faang.org/home
https://www.animalgenome.org/community/FAANG/index
https://www.ebi.ac.uk/ena/browse/download
https://icgc.org
https://docs.icgc.org/download/data-access
https://samtools.github.io/hts-specs/SAMv1.pdf
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
https://scihub.copernicus.eu/
http://siam.imida.es/apex/f?p=101:1:8786098632739315
http://www.aemet.es/es/portada
https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/biodiversidad/enp.aspx
https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/biodiversidad/enp.aspx
https://www.python.org/
https://www.qgis.org
https://qgis.org/pyqgis/3.0/


H2020 825184 RIA
24/07/2019 CloudButton

[23] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov, and
C. Wu, “Serverless computing: One step forward, two steps back,” Conference on Innovative
Data Systems Research (CIDR’19), 2019.

[24] E. J. et al, “Cloud programming simplified: A berkeley view on serverless computing,”
https://arxiv.org/abs/1902.03383, 2019.

[25] Denis Kennely, “Three Reasons most Companies are only 20 Percent to Cloud
Transformation.” https://www.ibm.com/blogs/cloud-computing/2019/03/05/
20-percent-cloud-transformation/.

[26] “Amazon AWS Serverless Definition.” https://aws.amazon.com/serverless/, 2019.

[27] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient memory disaggregation with
infiniswap.,” in NSDI, pp. 649–667, 2017.

[28] Z. A.-A. et al, “Making serverless computing more serverless,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 2018.

[29] J. Sampé, M. Sánchez-Artigas, P. García-López, and G. París, “Data-driven serverless functions
for object storage,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
pp. 121–133, ACM, 2017.

[30] “Open-sourcing gVisor, a sandboxed container runtime.” https://cloud.google.com/blog/
products/gcp/open-sourcing-gvisor-a-sandboxed-container-runtime, 2018.

[31] “WebAssembly on CloudFlare Workers.” https://blog.cloudflare.com/
webassembly-on-cloudflare-workers/, 2018.

[32] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“SOCK: Rapid task provisioning with serverless-optimized containers,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pp. 57–70, 2018.

[33] J. Sampe, M. Sanchez-Artigas, P. Garcia Lopez, and G. Paris, “Data-driven serverless functions
for object storage,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
Middleware ’17, (New York, NY, USA), pp. 121–133, ACM, 2017.

[34] Y. Kim and J. Lin, “Serverless data analytics with Flint,” CoRR, vol. abs/1803.06354, 2018.

[35] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica, B. Recht, and J. Ragan-Kelley,
“numpywren: serverless linear algebra,” 2018.

[36] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on
serverless infrastructure,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), (Boston, MA), pp. 193–206, USENIX Association, 2019.

[37] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “SAND: To-
wards high-performance serverless computing,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 923–935, 2018.

[38] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 427–444, USENIX Association, 2018.

[39] P. García López, M. Sánchez-Artigas, G. París, D. Barcelona Pons, Á. Ruiz Ollobarren, and
D. Arroyo Pinto, “Comparison of faas orchestration systems,” in 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 148–153, IEEE,
2018.

Page 50 of 52

https://www.ibm.com/blogs/cloud-computing/2019/03/05/20-percent-cloud-transformation/
https://www.ibm.com/blogs/cloud-computing/2019/03/05/20-percent-cloud-transformation/
https://aws.amazon.com/serverless/
https://cloud.google.com/blog/products/gcp/open-sourcing-gvisor-a-sandboxed-container-runtime
https://cloud.google.com/blog/products/gcp/open-sourcing-gvisor-a-sandboxed-container-runtime
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/


H2020 825184 RIA
24/07/2019 CloudButton

[40] Amazon, “AWS Step Functions.” https://aws.amazon.com/step-functions/, 2016.

[41] Microsoft, “Azure Durable Functions.” https://docs.microsoft.com/en-us/azure/
azure-functions/durable-functions-overview, 2018.

[42] “Apache OpenWhisk Composer.” https://github.com/apache/
incubator-openwhisk-composer, 2018.

[43] Amazon, “Amazon Elastic Kubernetes Service.” https://aws.amazon.com/eks/, 2018.

[44] Google, “Kubernetes Engine.” https://cloud.google.com/kubernetes-engine/, 2014.

[45] Microsoft, “Azure Kubernetes Service (AKS).” https://azure.microsoft.com/en-us/
services/kubernetes-service/, 2017.

[46] Amazon, “AWS Fargate.” https://aws.amazon.com/fargate/, 2017.

[47] Microsoft, “Container instances.” https://azure.microsoft.com/en-us/services/
container-instances/, 2017.

[48] Google, “Google Cloud Run.” https://cloud.google.com/run/, 2019.

[49] “KNative Platform.” https://cloud.google.com/knative/, 2019.

[50] “H2020 CloudButton, Serverless Data Analytics.” http://cloudbutton.eu, 2019.

[51] “Fission Flows.” https://fission.io/workflows/, 2018.

[52] “Argo Workflows.” https://argoproj.github.io/, 2018.

[53] “Apache Airflow.” https://github.com/apache/airflow, 2018.

[54] “Brigade: Event-based Scripting for Kubernetes.” https://github.com/brigadecore/brigade,
2018.

[55] “Kubeflow.” https://www.kubeflow.org/, 2018.

[56] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu, and F. Huici,
“My vm is lighter (and safer) than your container,” in Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, (New York, NY, USA), pp. 218–233, ACM, 2017.

[57] M. Stonebraker and G. Kemnitz, “The POSTGRES Next Generation Database Management Sys-
tem,” Commun. ACM, vol. 34, pp. 78–92, Oct. 1991.

[58] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free Coordination for
Internet-scale Systems,” in USENIX Annual Technical Conference, USENIX ATC, USENIX As-
sociation, 2010.

[59] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consistency properties and the trade-
offs in commercial cloud storage: the consumers’ perspective,” in CIDR 2011, Fifth Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011,
Online Proceedings, pp. 134–143, 2011.

[60] H. Attiya and J. L. Welch, “Sequential consistency versus linearizability (extended abstract),” in
Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’91, (New York, NY, USA), pp. 304–315, ACM, 1991.

[61] L. Lamport, “The part-time parliament,” ACM Trans. Computer Systems, vol. 16, pp. 133–169,
May 1998.

Page 51 of 52

https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://github.com/apache/incubator-openwhisk-composer
https://github.com/apache/incubator-openwhisk-composer
https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://cloud.google.com/run/
https://cloud.google.com/knative/
http://cloudbutton.eu
https://fission.io/workflows/
https://argoproj.github.io/
https://github.com/apache/airflow
https://github.com/brigadecore/brigade
https://www.kubeflow.org/
http://doi.acm.org/10.1145/125223.125262
http://doi.acm.org/10.1145/125223.125262
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851


H2020 825184 RIA
24/07/2019 CloudButton

[62] D. Ongaro and J. K. Ousterhout, “In search of an understandable consensus algorithm,” in
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX
ATC’14, (Philadelphia, PA, USA), pp. 305–319, June 2014.

[63] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky, “Putting the Micro Back in Microser-
vice,” 2018 USENIX Annual Technical Conference (USENIX ATC ’18)., pp. 645–650, 2018.

[64] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. Bastien, “Bringing the web up to speed with WebAssembly,” Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation - PLDI
2017, pp. 185–200, 2017.

[65] Fastly, “Fastly Labs - Terrarium.” https://www.fastlylabs.com/.

[66] “Prometheus - Monitoring system & time series database.” https://prometheus.io/.

[67] “Grafana.” https://github.com/grafana/grafana.

[68] E. D. Kyriazis, “Cloud computing service level agreements— Exploitation of research results,”
tech. rep., European Commission Directorate General Communications Networks, Content and
Technology Unit E2—Software and Services, Cloud, 2013.

Page 52 of 52

https://www.fastlylabs.com/
https://prometheus.io/
https://github.com/grafana/grafana

	Executive summary
	Introduction
	Metabolomics use case
	Experiments description
	Experiments
	Data

	Pipelines
	Metabolomics Specific Use Case 1: General annotation
	Metabolomics Specific Use Case 2: Interactive annotation
	Metabolomics Specific Use Case 3: Large dataset annotation

	Transition to serverless

	Genomics use case
	Introduction
	Current situation
	Motivation for serverless

	Description of datasets
	FAANG (Functional Annotation of ANimal Genomes) datasets
	Virus-host interaction from ENA
	Immune system cancers from ICGC
	Formats

	Description of experiments
	Analysis pipeline
	Transition to serverless
	Evaluation criteria


	GeoSpatial use case
	Experiments description
	Data
	Processes
	Outputs

	Pipelines
	Transition to serverless
	Data partition
	Parallel tasks for geoprocesses


	Project Vision and State of the Art
	Tradeoffs of Serverless Computing
	State of the Art

	General objectives
	High Performance Serverless Run-time
	Mutable Shared Data for Serverless Computing
	CloudButton toolkit

	CloudButton Architecture
	Initial Specifications and Software components
	Infinispan
	Serverless infrastructure: Monitoring and SLA management


	Conclusions

