
HORIZON 2020 FRAMEWORK PROGRAMME

CloudButton
(grant agreement No 825184)

Serverless Data Analytics Platform

D2.5 Reference Implementation of Architectural Building
Blocks

Due date of deliverable: 30-06-2022
Actual submission date: 20-07-2022

Start date of project: 01-01-2019 Duration: 42 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 98

WP/Task related to this document WP2 / T2.1, T2.3, T2.4, T2.5, T2.6

WP/Task responsible URV

Leader Pedro García Lopez (URV)

Technical Manager Pedro García Lopez (URV)

Quality Manager Marc Sanchez (URV)

Author(s) Pedro García (URV), Rut Palmero (ATOS), Lara Lopez
(ATOS), Theodore Alexandrov (EMBL), Paolo Ribeca (JHI),
Carlos Segarra (IMP), Guo Li (IMP), Vasily Sartakov (IMP),
Marc Sánchez (URV)

Partner(s) Contributing URV, ATOS, EMBL, JHI.

Document ID CloudButton_D2.5_Public.pdf

Abstract The deliverable aims to present the final design and refer-
ence implementation of the CloudButton toolkit. It also in-
cludes the performance evaluation study on the data and
experiments from the different use cases.

Keywords use cases, experiments, architecture, state of the art.

History of changes

Version Date Author Summary of changes

0.1 09-05-2022 Pedro García
(URV)

Project Vision, Towards Transparency, CloudButton
Architecture

0.2 27-05-2022 Carlos Segarra
(IMP), Simon
Shillaker (IMP)

Genomics use case integration with Faasm.

0.3 30-05-2022 Carlos Segarra
(IMP), Guo Li
(IMP), Vasily
Sartakov (IMP)

Update transparency section for Faasm

0.4 17-07-2022 Paolo Ribeca
(JHI)

Genomics use case

0.5 17-07-2022 Aitor Arjona
(URV)

Geospatial use case

0.6 17-07-2022 Theodore
Alexandrov
(EMBL)

Metabolomics use case

Final 18-07-2022 Pedro Garcia
Lopez (URV)

Final edit including introduction, conclusions, and fi-
nal updates in different sections.

H2020 825184 RIA
20/07/2022 CloudButton

Table of Contents

1 Executive summary 1

2 Introduction 2

3 Project Vision 4
3.1 Serverless Analytics State of the Art . 5
3.2 Serverless orchestration systems . 7
3.3 Serverless container services . 8

4 Towards transparency 9
4.1 DDC path to transparency . 9
4.2 Server-centric path to Transparency . 10
4.3 Serverless Python multiprocessing . 11
4.4 Limits of disaggregation and transparency . 14
4.5 Challenges ahead . 14

5 CloudButton Architecture 17
5.1 Overall view . 17

5.1.1 Integration among the different components and contributions 18
5.2 Software Releases . 19

5.2.1 Multi-cloud support . 20

6 Metabolomics use case 21
6.1 Description of the use case . 21
6.2 METASPACE and the Big Data challenge . 22
6.3 METASPACE and CloudButton . 23
6.4 METASPACE-Lithops - The first step to Serverless . 24
6.5 Experiments . 26
6.6 Benchmarking datasets and metrics . 26
6.7 METASPACE-Lithops - The hybrid solution . 28
6.8 Benchmarking results, KPIs . 29

7 Genomics use case 32
7.1 Experiments description . 33
7.2 Integration of the genomics pipeline with FAASM . 34
7.3 General cloud genomic toolkit components with Lithops 37

7.3.1 FASTQ.GZ partitioner . 37
7.3.2 FASTQ partitioner using SRAtools . 38
7.3.3 FASTA partitioner . 39

7.4 Integration of Variant calling pipeline with Lithops . 40
7.4.1 Pipeline overview . 40
7.4.2 Variant Calling pipeline: key steps . 40
7.4.3 Cross-function communication with Redis . 43
7.4.4 Parallel reducer . 43
7.4.5 Results . 44
7.4.6 Code, documentation and datasets . 47

7.5 Transparent conversion of legacy code . 47
7.5.1 Architectural breakdown and proposed changes 47
7.5.2 Adapting the OCaml framework with a Lithops Python wrapper 48
7.5.3 Validation . 52

7.6 Conclusions . 54

i

H2020 825184 RIA
20/07/2022 CloudButton

8 Geospatial use case 55
8.1 Geospatial use case: a general overview . 56
8.2 Preprocessing Workflow: LiDAR Partitioner for Lithops 57

8.2.1 LiDAR file format . 57
8.2.2 Coordinates-based naive partitioning . 58
8.2.3 Density-based advanced partitioning . 58
8.2.4 Single-file partitioning performance evaluation 60
8.2.5 Partitioning of a LiDAR dataset (multiple files) 61
8.2.6 Conclusion . 62

8.3 Preprocessing Workflow: Geospatial Models Calculation 63
8.3.1 Data granularity analysis . 63
8.3.2 Partitioning Comparative . 64
8.3.3 Conclusion . 65

8.4 Preprocessing Workflow: Sentinel2 Satellite Imaging Processing 65
8.4.1 Sentinel2 satellite images . 65
8.4.2 Cloud-Optimized rasters for high-performance parallel processing 66
8.4.3 A ServerMix approach with Lithops . 66
8.4.4 Conclusion . 68

8.5 Geospatial Workflow: NDVI Calculation . 68
8.5.1 Normalized Difference Vegetation Index . 68
8.5.2 Cloud-Optimized GeoTIFFs and the AWS Open Data Registry 68
8.5.3 Sample execution: NDVI difference using Lithops 68
8.5.4 Conclusion . 70

8.6 Geospatial Workflow: Water Consumption . 71
8.6.1 Workflow execution sample . 71
8.6.2 Conclusion . 73

8.7 Geospatial Workflow: Biomass Calculation . 74
8.7.1 Filtered Canopy Height Models . 74
8.7.2 Determine local maximums and watershed segmentation 75
8.7.3 Training data and Random Forest classification 75
8.7.4 SpeedUp & Parallelism . 75

9 Conclusions 77

10 Annex 1: Questionnaire Template 83
10.1 CloudButton Questionnaire . 83

11 Annex 2: Answers to the CloudButton Questionnaire 86
11.1 Applicability . 86
11.2 Simplicity . 87
11.3 Productivity . 87
11.4 Scalability, Elasticity and Performance . 88
11.5 Cost . 88
11.6 Learning and documentation . 89
11.7 System Evaluation . 91

12 Annex 3: Serverless variant caller READMEs 92
12.1 Installation requirements . 92

12.1.1 Install local dependencies (where the script is executed): 92
12.1.2 Build and upload the runtime . 92

12.2 Running the variant caller . 92
12.3 Running the variant caller using Docker on AWS EC2 93

ii

H2020 825184 RIA
20/07/2022 CloudButton

12.3.1 Virtual Machine configuration . 93
12.3.2 Docker configuration in the VM . 94
12.3.3 Building the container from scratch . 96

12.4 Redis Installation . 96
12.4.1 Virtual Machine configuration . 96
12.4.2 Installation and Configuration of software used in the Virtual Machine 97
12.4.3 Test correct installation . 98

iii

H2020 825184 RIA
20/07/2022 CloudButton

1 Executive summary

The deliverable D2.3 "Serverless Compute Engine Reference Implementation" aims to present the fi-
nal design and reference implementation of the CloudButton toolkit. It also includes the performance
evaluation study on the data and experiments from the different use cases.

This deliverable is complemented by the public github repositories produced in the project. In
particular, we outline here the following ones:

• Lithops (https://github.com/lithops-cloud/lithops)

• Crucial (https://github.com/crucial-project/crucial)

• Faasm (https://github.com/faasm/faasm)

• Serverless Metabolomics Use Case (https://github.com/metaspace2020/Lithops-METASPACE)

• Serverless Geospatial Use Case (https://github.com/cloudbutton/geospatial-usecase)

• Serverless Genomics Use Case (https://gitlab1.bioss.ac.uk/lmarcello/serverless_genomics/
-/tree/main/variant_caller)

Lithops, Crucial and FaasM are the three core contributions of the CloudButton toolkit. Focusing
on exploitation and production ready environments, Lithops is the major technical achievement of
the project. It is a Serverless Data Analytics platform used today in production in EMBL (METAS-
PACE), IBM, Hutton and many other locations.

In the cloudbutton.eu web site we also offer the final reference implementation of all software
components. It also includes tutorials to facilitate the adoption of the platform by third-party devel-
opers.

This document is structured as follows. Section 2 provides a brief introduction to the deliverable.
Section 3 presents the project vision and an analysis of Serverless Analytics State of the Art. In Section
4, we present our reflections on several paths to achieve transparency in disaggregated systems.
Section 5 describes the project Architecture and main building blocks. Sections 6-8 are devoted to the
description of the use cases. Finally, Section 9 contains the conclusions of this document.

Page 1 of 98

https://github.com/lithops-cloud/lithops
https://github.com/crucial-project/crucial
https://github.com/faasm/faasm
https://github.com/metaspace2020/Lithops-METASPACE
https://github.com/cloudbutton/geospatial-usecase
https://gitlab1.bioss.ac.uk/lmarcello/serverless_genomics/-/tree/main/variant_caller
https://gitlab1.bioss.ac.uk/lmarcello/serverless_genomics/-/tree/main/variant_caller

H2020 825184 RIA
20/07/2022 CloudButton

2 Introduction

The CloudButton project started in January 2019 and it finished in June 2022. CloudButton aimed to
create a novel Serverless Dara Analytics Platform that could benefit from the promising services of
the emerging serverless computing paradigm.

In particular, serverless, fully-managed experience could contribute to simplify the deployment
of Big Data analytics pipelines in the Cloud. Our major aim was to considerably simplify Big Data
computing in the Cloud thanks to serverless technologies. As starting point, we were inspired by the
seminal paper by Jonas et al. [1], where it was stated the following enlightening phrase: “Why is there
no cloud button?” The authors outlined how their students from Berkeley simply wished they could
easily push a button and have their code — existing, optimized, single-machine code — running on
the cloud".

After three years, we are proud to say that we have realized the CloudButton vision, presenting
and validating the vision of transparency [2] [3]. We defined transparency as “running unmodified
single-machine code over effectively unlimited compute, storage, and memory resources in the Cloud”. For
this reason, it is not rare that our first Key Performance Indicator (KPI) to demonstrate the success of
the project have been Simplicity & Productivity.

Simplicity & Productivity. The project has produced three main efforts in transparently moving
applications to the Cloud: Python, Java, and C++. The tree of them contributed to the Simplicity &
Productivity KPI by overly simplifying the deployment and execution of those applications in the
Cloud. These are:

• Python: Lithops can be sensed as the key Python toolkit that demonstrated transparency for
Python MapReduce and multiprocessing applications, such as Deep Learning (DL), Evolution
Strategies, and Proximal Policy Optimization, to name a few;

• Java: Crucial and sshell is the major toolkit to demonstrate transparency for Java applications
(e.g., serverless ExecutorService, Unbalanced Tree Search algorithm, SMILE machine learning
(ML) library); and

• C/C++: Faasm is the major toolkit based on WebAssembly (Wasm) technology to transparently
port, mostly C++ and HPC applications built upon OpenMP and OpenMPI.

We will demonstrate in this deliverable how easy is to analyze massive datasets in the Cloud with
a few lines of Python code. We also provide the results of an open questionnaire that was distributed
in the Lithops user community.

Performance in Big Data pipelines. A second important goal of this project is to test if serverless
Cloud technologies can be suitable for executing large scale Big Data pipelines. We selected three
domains involving large unstructured data: genomics (text files such as FAST or FASTQ data types),
metabolomics (images such as imlMZ data types), and geospatial data (images from Sentinel satellite,
cloud of points in LIDAR data type).

Accordingly, the second KPI to demonstrate this project revolves around Scalability & Elasticity
& Performance. Elasticity and auto-scaling are novel features claimed by the serverless paradigm.
Nevertheless, an important question was if storage and compute resources in the Cloud could sustain
the stringent scaling requirements of Big Data volumes.

Just to illustrate, we have benchmarked state of the art public serverless services1 [4] to verify that
Cloud object storage can provide huge aggregated bandwidth to parallel processes (around 100GB/s)
and offer thousand of cores (vCPUs) in an elastic way (1000 parallel vCPUs/s spawned in less than
100ms). We will also demonstrate in this deliverable Performance/scalabily KPIs using Big Data
pipelines in the three use cases.

Another key contribution of the CloudButton project is its data-driven approach to automatically
provision data resources based on data volumes and data types. To wit, Lithops has been enhanced to

1https://github.com/lithops-cloud/applications/tree/master/benchmarks

Page 2 of 98

https://github.com/lithops-cloud/applications/tree/master/benchmarks

H2020 825184 RIA
20/07/2022 CloudButton

automatically launch the required computing devices from a plethora of data partitioning schemes
developed in this project for the different data types. We considerably simplified ETL (EXtract/-
Transform/Load) and preprocessing phases in the Cloud by implementing dynamic data partitioning
schemes specially designed for Cloud object storage.

In this final deliverable, we contribute the overall vision of transparency, describe in-depth the
Lithops toolkit, and validate all KPIS using the three use cases.

Page 3 of 98

H2020 825184 RIA
20/07/2022 CloudButton

3 Project Vision

Current practice shows that the FaaS model is well suited for many types of applications, provided
that they require a small amount of storage and memory. Indeed, this model was originally designed
to execute event-driven, stateless functions in response to user actions or changes in the storage tier
(e.g., uploading a photo to Amazon S3), which encompasses many common tasks in Cloud applica-
tions. What was unclear is whether or not this new computing model could also be useful to execute
data analytics applications.

This question was answered partially in 2017 with the appearance of two relevant research articles
[5] [1] that demonstrated that Function-as-a-Service (FaaS) could sustain massively parallel compu-
tations in the Cloud. The former presented ExCamera, providing on-the-fly video encoding over
thousands of Amazon Lambda Functions. ExCamera proved to be 60% faster and 6x cheaper than
using VM instances. Another relevant work is the “Occupy the Cloud” paper, showcasing simple
MapReduce jobs executed over Lambda Functions in their PyWren prototype. In this case, PyWren
was 17% slower than PySpark running on r3.xlarge VM instances. But the authors claimed that the
simplicity of configuration and inherent elasticity of Lambdas justified the performance penalty. In
this paper, they did not compare the costs between their lambdas and the VM experiments.

Both research works demonstrated the enormous potential of serverless data analytics. The two
major advantages are clearly the simplicity and the massive scalability and elasticity of the model.
On the one hand, the scaling, deployment, provisioning, fault-tolerance, and monitoring of functions
is delegated to the cloud provider. Furthermore, the programming simplicity of functions clearly
paves the way to a smooth Cloud transition. On the other hand, the transparent and almost infinite
elasticity boosts the analysis of huge data volumes accessible in Cloud Object Stores.

But Serverless Computing is nowadays not adequate for many data analytics tasks due to two
fundamental problems: high cost and lack of performance compared to Cluster Computing or even
VMs running Spark. Two recent articles have outlined the major limitations of the Serverless model
in general: [6] and [7]. In the latter, they review the performance and cost of several data analytics
applications. They show that MapReduce Sort (100TB) was 1% faster than VMs, but costing 15%
higher; Linear Algebra (NumPyWren) was 3x slower than an MPI implementation in a dedicated
cluster, but only valid for large problem sizes; and Machine Learning pipelines (Cirrus) were 3x-5x
faster than VM instances, but up to 7x higher total cost.

Furthermore, existing approaches must rely on auxiliary Serverful services to circumvent the
limitations of the stateless serverless model. PyWren uses Amazon S3 for storage, coordination, and
communication, Locus uses Redis ElastiCache In-memory system, ExCamera relies on a external
rendezvous and communication service, or Cirrus relies on disaggregated in-memory servers.

In deliverable D2.1 [8], we identified the hybrid applications combining Serverless and Serverful
services as ServerMix, and we showed how most related work can be classified under the ServerMix
umbrella term.

We also identified three important tradeoffs of the Serverless model and how these tradeoffs could
be relaxed to obtain more performance:

1. Relaxing disaggregation: Using locality in memory or function placement could boost perfor-
mance. Moving from a serverless data-shipping model to benefit from computation close to the
data could easily achieve performance improvements. But disaggregation is the fundamental
pillar of elasticity in the Cloud.

2. Relaxing isolation: Co-locating related functions (namespaces) in the same containers, and
reusing containers could also improve performance. Providing direct communication between
functions could also facilitate shared replicated memory models. Leveraging lightweight con-
tainers or even using language-level constructs would also reduce cold starts and boost inter-
function communications. But isolation is the basis for multi-tenancy and security.

3. Flexible QoS and scheduling: To ensure SLAs it could be possible to implement more sophis-
ticated scheduling algorithms that can reserve resources or entire nodes to functions, or even

Page 4 of 98

H2020 825184 RIA
20/07/2022 CloudButton

execute them in specialized hardware like GPUs. But simple location-agnostic scheduling is
the basis for reduced start times and increased cloud resource utilization.

We claimed that the so-called "limitations" of the serverless model are indeed its defining traits.
When applications should require aggregation (computation close to the data), relaxing isolation
(co-location, direct communication), or tunable scheduling (predictable performance, hardware ac-
celeration) a suitable solution is to build a ServerMix.

Therefore, in CloudButton project we advocate for (i) Smart Scheduling as a mechanism for pro-
viding transparent provisioning to applications while optimizing the cost-performance tuple in the
Cloud, (ii) Fine-grained State Disaggregation thanks to Serverless Mutable Consistent State services,
and (ii) Lightweight and Polyglot Serverful Isolation: novel lightweight Serverful FaaS runtimes
based on WebAssembly as universal multi-language substrate.

3.1 Serverless Analytics State of the Art

Despite the stringent constraints of the FaaS model, a number of works have managed to show
how this model can be exploited to process and transform large amounts of data [1, 9, 10], encode
videos [5], and run large-scale linear algebra computations [11], among other applications. Surpris-
ingly, and contrary to intuition, most of these serverless data analytics systems are indeed good
ServerMix examples, as they combine both serverless and serverful components.

In general, most of these systems rely on a external, serverful provisioner component [1, 9, 10,
5, 11]. This component is in charge of calling and orchestrating serverless functions using the APIs
of the chosen cloud provider. Sometimes the provisioner is called “coordinator” (e.g., as in ExCam-
era [5]) or “scheduler” (e.g., as in Flint [10]), but its role is the same: orchestrating functions and
providing some degree of fault tolerance. But the story does not end here. Many of these systems
require additional serverful components to overcome the limitations of the FaaS model. For exam-
ple, recent works such as [12] use disaggregated in-memory systems such as ElastiCache Redis to
overcome the throughput and speed bottlenecks of slow disk-based storage services such as S3. Or
even external communication or coordination services to enable the communication among functions
through a disaggregated intermediary (e.g., ExCamera [5]).

To fully understand the different variants of ServerMix for data analytics, we will review each
of the systems one by one in what follows. Table 1 details which components are serverful and
serverless for each system.

PyWren [1] is a proof of concept that MapReduce tasks can be run as serverless functions. More
precisely, PyWren consists of a serverful function scheduler (i.e., a client Python application) that
permits to execute “map” computations as AWS Lambda functions through a simple API. The “map”
code to be run in parallel is first serialized and then stored in Amazon S3. Next, PyWren invokes a
common Lambda function that deserializes the “map” code and executes it on the relevant datum,
both extracted from S3. Finally, the results are placed back into S3. The scheduler actively polls S3 to
detect that all partial results have been uploaded to S3 before signaling the completion of the job.

Lithops [9] is a PyWren derived project which adapts and extends PyWren for multiple cloud
providers, such as IBM CLoud, Azure or Google Cloud. It includes a number of new features, such
as broader MapReduce support, automatic data discovery and partitioning, integration with Jupiter
notebooks, and simple function composition, among others. For function coordination, Lithops uses
RabbitMQ to avoid the unnecessary polling to the object storage service (IBM COS), thereby improv-
ing job execution times compared with PyWren.

ExCamera [5] performs digital video encoding by leveraging the parallelism of thousands of
Lambda functions. Again, ExCamera uses serverless components (AWS Lambda, Amazon S3) and
serverful ones (coordinator and rendezvous servers). In this case, apart from a coordinator/sched-
uler component that starts and coordinates functions, ExCamera also needs of a rendezvous service,
placed in an EC2 VM instance, to communicate functions amongst each other.

Stanford’s gg [13] is an orchestration framework for building and executing burst-parallel appli-
cations over Cloud Functions. gg presents an intermediate representation that abstracts the compute

Page 5 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Table 1: ServerMix applications

Systems Components

Serverful Serverless

PyWren [1] Scheduler AWS Lambda, Amazon S3

PyWren-IBM-
Cloud [9]

Scheduler
IBM Cloud Functions, IBM
COS, RabbitMQ

ExCamera [5]
Coordinator and rendezvous
servers (Amazon EC2 VMs)

AWS Lambda, Amazon S3

gg [13] Coordinator
AW Lambda, Amazon S3,
Redis

Flint [10]
Scheduler (Spark context on
client machine)

AW Lambda, Amazon S3,
Amazon SQS

Numpywren [11]
Provisioner, scheduler (client
process)

AWS Lambda, Amazon S3,
Amazon SQS

Cirrus [7]
Scheduler, parameter servers
(large EC2 VM instances
with GPUs)

AWS Lambda, Amazon S3

Locus [12]
Scheduler, Redis service
(AWS ElastiCache)

AWS Lambda, Amazon S3

and storage platform, and it provides dependency management and straggler mitigation. Again, gg
relies on an external coordinator component, and an external Queue for submitting jobs (gg’s thunks)
to the execution engine (functions, containers).

Flint [10] implements a serverless version of the PySpark MapReduce framework. In particular,
Flint replaces Spark executors by Lambda functions. It is similar to PyWren in two main aspects.
On one hand, it uses an external serverful scheduler for function orchestration. On the other hand,
it leverages S3 for input and output data storage. In addition, Flint uses the Amazon’s SQS ser-
vice to store intermediate data and perform the necessary data shuffling to implement many of the
PySpark’s transformations.

Numpywren [11] is a serverless system for executing large-scale dense linear algebra programs.
Once again, we observe the ServerMix pattern in numpywren. As it is based in PyWren, it relies on
a external scheduler and Amazon S3 for input and ouput data storage. However, it adds an extra
serverful component in the system called provisioner. The role of the provisioner is to monitor the
length of the task queue and increase the number of Lambda functions (executors) to match the
dynamic parallelism during a job execution. The task queue is implemented using Amazon SQS.

Cirrus machine learning (ML) project [7] is another example of a hybrid system that combines
serverful components (parameter servers, scheduler) with serverless ones (AWS Lambda, Amazon
S3). As with linear algebra algorithms, ML researchers have traditionally used clusters of VM in-
stances for the different tasks in ML workflows. Nonetheless, a fixed a cluster size can either lead
to severe underutilization or slowdown, since each stage of a workflow can demand significantly
different amounts of resources. Cirrus addresses this challenge by enabling every stage to scale to
meet its resource demands by using Lambda functions. The main problem with Cirrus is that many

Page 6 of 98

H2020 825184 RIA
20/07/2022 CloudButton

ML algorithms require state to be shared between cloud functions, for it uses VM instances to share
and store intermediate state. This necessarily converts Cirrus into another example of a ServerMix
system.

Finally, the most recent example of ServerMix is Locus [12]. Locus targets one of the main lim-
itations of the serverless stateless model: data shuffling and sorting. Due to the impossibility of
function-to-function communication, shuffling is ill-suited for serverless computing, leaving no other
choice but to implement it through an intermediary cloud service, which could be cost prohibitive to
deliver good performance. Indeed, the first attempt to provide an efficient shuffling operation was
realized in PyWren [1] using 30 Redis ElastiCache servers, which proved to be a very expensive solu-
tion. The major contribution of Locus was the development of a hybrid solution that considers both
cost and performance. To achieve an optimal cost-performance trade-off, Locus combined a small
number of expensive fast Redis instances with the much cheaper S3 service, achieving comparable
performance to running Apache Spark on a provisioned cluster.

We did not include SAND [14] in the list of ServerMix systems. Rather, it proposes a new FaaS
runtime. In the article, the authors of SAND present it as an alternative high-performance serverless
platform. To deliver high performance, SAND introduces two relaxations in the standard server-
less model: one in disaggregation, via a hierarchical message bus that enables function-to-function
communication, and another in isolation, through application-level sandboxing that enables packing
multiple application-related functions together into the same container. Although SAND was shown
to deliver superior performance than Apache OpenWhisk, the paper failed to evaluate how these
relaxations can affect the scalability, elasticity and security of the standard FaaS model.

Recent works also outline the need for novel serverless services providing flexible disaggregated
storage to serverless functions. This is the case of Pocket’s ephemeral storage service [15], which
provides auto-scaling and pay-per-use as a service to cloud functions. Similarly, [7] proposes as a fu-
ture challenge the creation of high-performance, affordable, transparently provisioned storage. This
work discusses two types of unaddressed storage needs: Serverless Ephemeral Storage and Serverless
Durable Storage, both of which should deliver micro-second latencies, fault-tolerance, auto-scalability
and transparent provisioning for multi-tenant workloads. The paper suggests that with a shared in-
memory service, spare memory resources from one serverless application can be allocated to another.
Finally, it also elaborates on why existing cloud services such as Redis or MemCached cannot fulfill
the aforementioned storage needs. Actually, both in-memory services can be deemed as serverful due
to their need for explicit provisioning and dedicated resources per tenant.

3.2 Serverless orchestration systems

An interesting alternative could be to use serverless orchestration services to coordinate and pro-
vision data analytics applications. The key question is whether these systems are actually well-
prepared to orchestrate massively parallel computations. In this sense, our recent paper [16] com-
pares three commercial serverless orchestration services along several axis: Amazon Step Functions,
Azure Durable Functions, and IBM Composer, updating a previous analysis [17]. The conclusion
of our study was that none of the platforms solve the orchestration of parallel computations with
suitable performance.

We find that IBM Composer is the best solution available as of today. Its idea of using serverless
functions for the orchestration logic is indeed a good decision to achieve fitting elasticity. However,
its implementation of parallel executions fails to fulfill a reactive scheme by adding a synchronous
external connection. Furthermore, the system falls short on allowing long-running workflows (some
steps would be billed for idle time and waste resources); a direct consequence of the orchestration
system being so tightly integrated in the FaaS infrastructure itself. We also believe that orchestration
of serverless functions requires a reactive event-based design, avoiding double billing and blocking
external invocations.

Unfortunately, as of today, the reality is that cloud applications are still inadvertently bound to the
ServerMix model. In fact, several cloud providers are now transitioning to hybrid models combining
serverless and serverful concepts. For instance, we have recently seen how some cloud providers

Page 7 of 98

H2020 825184 RIA
20/07/2022 CloudButton

like Microsoft offer ServerMix FaaS services such as the Azure Premium Plan for running functions
on dedicated machines while abstracting users from the provisioning phase. The Azure platform is
even allowing users to pre-warm functions to reduce their cold starts.

3.3 Serverless container services

Hybrid cloud technologies are also accelerating the combination of serverless and serverful compo-
nents. For instance, the recent deployment of Kubernetes (k8s) clusters in the big cloud vendors
can help overcome the existing application portability issues in the cloud. There exists a plenty of
hosted k8s services such as Amazon Elastic Container Service (EKS), Google Kubernetes Engine (GKE),
and Azure Kubernetes Service (AKS), which confirm that this trend is gaining momentum. However,
none of these services can be considered 100% “serverless”. Rather, they should be viewed as a mid-
dle ground between cluster computing and serverless computing. That is, while these hosted services
offload operational management of k8s, they still require custom configuration by developers. The
major similarity to serverless computing is that k8s can provide short-lived computing environments
like in the customary FaaS model.

But a very interesting recent trend is the emergence of the so-called serverless container services
such as AWS Fargate, Azure Container Instances (ACI), and Google Cloud Run (GCR). These ser-
vices reduce the complexity of managing and deploying k8s clusters in the cloud. While they offer
serverless features such as flexible automated scaling and pay-per-use billing model, these services
still require some manual configuration of the right parameters for the containers (e.g., compute,
storage, and networking) as well as the scaling limits for a successful deployment.

These alternatives are interesting for long-running jobs such as batch data analytics, while they
offer more control over the applications thanks to the use of containers instead of functions. In any
case, they can be very suitable for stateless, scalable applications, where the services can scale-out
by easily adding or removing container instances. In this case, the user establishes a simple CPU
or memory threshold and the service is responsible for monitoring, load balancing, and instance
creation and removal. It must be noted that if the service or application is more complex (e.g., a
stateful storage component), the utility of these approaches is rather small, or they require important
user intervention.

For example, AWS Fargate offers two models: Fargate launch type and EC2 launch type. The
former is more serverless and requires less configuration. The latter gives users more control but also
more responsibility. An analogous issue occurs with Google: Cloud Run vs. Cloud Run on GKE. The
former is automated and uses standard vCPUs, while the latter enables customers to select hardware
requirements and manage their cluster.

An important open source project related to serverless containers is CNCF’s Knative. In short,
Knative is backed by big vendors such as Google, IBM and RedHat, among others, and it simplifies
the creation of serverless containers over k8s clusters. Knative simplifies the complexity of k8s and
Istio service mesh components, and it creates a promising substrate for both PaaS and FaaS applica-
tions. GCR is based on Knative. IBM Cloud is also offering seamless Knative integration in their k8s
services. Yet, it is hard to see how, in future terms, hosted Knative and k8s cloud services will reshape
the current FaaS landscape, since, in its present form, have important implications on the key traits
of the FaaS model such as disaggregation and scheduling.

As a final conclusion, we foresee that the simplicity of the serverless model will gain traction
among users, so many new offerings may emerge in the next few years, thereby blurring the borders
between both serverless and serverful models. Further, container services may become an interesting
architecture for ServerMix deployments.

Page 8 of 98

H2020 825184 RIA
20/07/2022 CloudButton

4 Towards transparency

An aspect to consider when moving existing codebases to the serverless paradigm is that of the trans-
parency. Achieving full transparency would imply that we can compile, debug and run unmodified
single-machine code over effectively unlimited compute, storage, and memory resources.

Transparency is an archetypal challenge in distributed systems that has not yet been adequately
solved. Transparency implies the concealment from the user and the application programmer of the
complexities of distributed systems. Coulouris et al. [18] define eight forms of transparency: access,
location, concurrency, replication, failure, mobility, performance, and scalability.

But, despite all previous efforts, the problem is still open as seen in recent literature [1] and is,
in fact, one of the main objectives of this project: simplifying the overall life cycle and programming
model (in the application domain of big data analytics).

Waldo et al. [19] explain that the goal of merging the programming and computational models
of local and remote computing is not new. They state that around every ten years “a furious bout of
language and protocol design takes place and a new distributed computing paradigm is announced“.
They mention messages in the 70s, RPCs in the 80s, and objects in the 90s.

In every iteration, a new wave of software modernization is generated, and applications are
ported to the newest and hot paradigm. Waldo et al. claim that all these iterations may be evolution-
ary stages to unify both local and distributed computing. But they are pessimistic, and they believe
that this will not be possible because of latency, memory access, concurrency and partial failure.

That visionary paper even considers that, in the future, hardware improvements could make
the difference in latency irrelevant, and that differences between local and remote memory could be
masked. But they still claim that concurrency and partial failures preclude the unification of local and
remote computing. Unlike an OS, they are telling us that a distributed system has no single point of
resource allocation, synchronization, or failure.

But, what if novel cloud technologies could make the unification of local and remote paradigms
possible? Are we close to the end of the cycles of software modernization? Can we just compile to
the Serverless SuperComputer [20] imagined by Tim Wagner, inventor of AWS Lambda?

We argue in this deliverable that recent reductions in network latency [21, 22] are boosting re-
source disaggregation in the Cloud, which is the definitive catalyst to achieve transparency. Even if
existing Cloud services are still in the millisecond range (100ms Lambda overhead, 10ms in Kafka,
5-20ms in S3), disaggregation has already fueled the creation of serverless computing services like
Function as a Service, Cloud Object Storage, and messaging. If we can go down to µs RPCs [23, 24],
novel opportunities for transparency will emerge [25, 22].

We believe that the full transparency for serverless computing will arrive when all resources
(compute, storage, memory) can be offered in a disaggregated way with unlimited flexible scaling.
This will also require a new generation of locality-aware scalable stateful services, smartly combin-
ing disaggregation and local resources. Also, we indentify and study five open research challenges
required to achieve full transparency for most applications: (i) granular middleware and locality,
(ii) memory disaggregation, (iii) virtualization, (iv) elastic programming models, and (v) optimized
deployment.

4.1 DDC path to transparency

The DDC path is probably the most direct but also the most shocking for the distributed systems
community. In line with recent industrial trends on Disaggregated Data centers (DDC) [26], it im-
plies a distributed OS transparently leveraging disaggregated hardware resources like processing,
memory or storage.

A canonical example is LegoOS: A disseminated, distributed OS for hardware resource disag-
gregation [27]. LegoOS exposes a distributed set of virtual nodes (vNode) to users. Each vNode is
like a virtual machine managing its own disaggregated processing, memory and storage resources.
LegoOS achieves transparency and backwards compatibility by supporting the Linux system call
interface and Linux ABIs (Application Binary Interface), so that existing unmodified Linux applica-
tions can run on top of it. Even distributed applications that run on Linux can seamlessly run on a

Page 9 of 98

H2020 825184 RIA
20/07/2022 CloudButton

LegoOS cluster by running on a set of vNodes. For example, LegoOS shows how two unmodified
applications can be run in a distributed way: Phoenix (a single-node multi-threaded implementation
of MapReduce) and TensorFlow.

Another relevant work is Arrakis: The Operating System is the Control Plane [28]. Arrakis comes
from previous efforts aimed at optimizing the kernel code paths to improve data transfer and la-
tency in the OS. In Arrakis, applications have direct access to virtualized I/O devices, which allows
most I/O operations to bypass the kernel entirely without compromising process isolation. Arrakis
virtualized control plane approach allows storage solutions to be integrated with applications, even
allowing the development of higher level abstractions like persistent data structures. Even more, Ar-
rakis control plane is a first step towards integration with a distributed data center network resource
allocator.

If the OS can be extended with unbounded resources in a transparent way, distribution may no
longer be needed for many applications – single-node parallel programming is sufficient. This is
completely in line with the following assessment from the COST paper [29]: “You can have a second
computer once you’ve shown you know how to use the first one“. This paper presents a critique of
the current research in distributed systems, and even suggests that “there are numerous examples of
scalable algorithms and computational models; one only needs to look back to the parallel computing
research of decades past“.

COST stands in that paper for the “Configuration that Outperforms a Single Thread“. They
mainly compare optimized single-threaded versions of graph algorithms, with their equivalents in
distributed frameworks like Spark, Naiad, GraphX, Giraph or GraphLab. For example, Naiad has
a COST of 16 cores for executing PageRank on the twitter graph, which means that Naiad needs 16
cores to outperform a single-threaded version of the same algorithm in one machine.

An important reflection from this paper is that the overheads of distributed frameworks (coordi-
nation, serialization) can be extremely high just in order to justify scalability. But the COST paper is
not proposing a solution to the scalability problem, since it is obvious that a single machine cannot
scale enough for many algorithms.

But, what happens if we combine the COST idea with the DDC research? This is precisely what
Gao et al.[26] validated in a simple experiment comparing a COST version with a COST-DDC one
that relies on disaggregated memory (Infiniswap [30]). They demonstrate in this paper that the same
code can overcome the memory limits thanks to disaggregation and still obtain good performance
results.

DDC is openly challenging the so-called server-centric approach of development for the data
center. DDC advocates claim that the monolithic server model where the server is the unit of de-
ployment, operation, and failure is becoming obsolete. They advocate for a paradigm shift where
many existing server-centric (cluster computing) approaches must yield to a more efficient way of
managing resources in the Data Center.

The DDC paradigm is presenting server-centric cluster technologies as obsolete. But current ma-
ture Cloud technologies are built on top of server-centric models with commodity hardware and Eth-
ernet networks. Hardware resource disaggregation is interesting, but it still relies on server-centric
clusters for scaling. For example, LegoOS emulates disaggregated hardware components using a
cluster of commodity servers. Existing OS approaches like LegoOS have still not dealt with serious
distributed systems problems like scalability, consistency and security of the disaggregated resources
in a multi-tenant Cloud setting.

4.2 Server-centric path to Transparency

Recent proposals to achieve transparency intercept calls at the programming language level, replac-
ing local accesses with remote ones. For instance, in the context of the CloudButton project, Crucial
[31] implements a serverless scheduler (aka., executor service) for Java. This allows Java threads to
transparently run as serverless functions in the FaaS platform. Crucial also provides synchronization
primitives as well as consistent mutable data structures atop a disaggregated in-memory storage
layer. To date, the Crucial framework is limited to Java. Moreover, it does no support main memory

Page 10 of 98

H2020 825184 RIA
20/07/2022 CloudButton

scaling, nor transparent access to storage. Both have to be defined beforehand by the programmer
(e.g., by tuning the FaaS platform and relying on an object storage).

A second output of CloudButton is the serverless shell (sshell). The serverless shell is built
atop Crucial and permits to execute *NIX commands and scripts in a FaaS platform. Scripts are
oblivious of the distributed architecture, provided that data is mounted locally to each function, or
accessible remotely (e.g., via the HTTP protocol). The programmer can also use the disaggregated
in-memory computing layer of Crucial within a script. For instance, the following oneliner synchro-
nizes 100 functions on a barrier named foo: $> seq 1 1 100 | parallel -n0 sshell barrier -n foo await

-p 100. Crucial and the serverless shell are detailed in deliverable 4.3.
Another example of language-level transparency is Fiber [32]. Fiber implements an alternative

Python multiprocessing library that works over a scalable Kubernertes cluster. Fiber supports many
Python multiprocessing abstractions like Process, Pool, Queue, Pipe, and also remote memory in
Manager objects. It demonstrates transparency executing unmodified Python applications from the
OpenAI Baselines machine learning project. But Fiber does not support transparent disaggregated
storage and memory, and it is limited to Python applications using that library.

The Fabric for Deep Learning (FfDL) [33] system moves existing Deep Learning frameworks like
PyTorch or TensorFlow to the Cloud on top of cluster technologies like Kubernetes. [33] transpar-
ently provides dependability thanks to checkpointing, intercepting storage flows (file system) using
optimized storage drivers to cloud object storage, and supporting locality with a gang scheduling
algorithm that schedules all components of a job as a group.

FfDL gives us two interesting insights from their authors about the limitations of this system in
scalability and transparency. On the one hand, the scaling was observed to be framework dependent
so they could not achieve full scaling transparency. On the other hand, they explain that “the service
was then increasingly used by data scientists who wanted as much control over their FfDL jobs as
with their local machine“. Users wanted to download datasets or Python packages from the public
Internet, interactively debug models, and stream logs to local scripts in order to monitor the progress
of jobs. Many of these requests were not possible due to security limitations and the architecture of
the system, which frustrated some of their users.

Another example of transparency in a serverless context, and also a software output of CloudBut-
ton project, is FAASM [34]. FAASM is a serverless runtime that uses WebAssembly [35] as its isolaction
mechanism. To execute functions in FAASM, they first need to be cross-compiled to WebAssembly
(WASM). The WASM language specification allows the cross-compilation step to succeed in the pres-
ence of undefined symbols declared as imports [36]. The host sytem provides the implementation
for these symbols at runtime. This is the technique that WASM uses to implement a set of system
interface calls in a platform-independent way using WASI [37].

FAASM leverages this technique to provide a custom host interface for faaslets to chain functions,
and share state. In addition, FAASM provides implementations of popular parallel programming
models like OpenMP and MPI. This means that serverless applications running on FAASM can exe-
cute OpenMP or MPI applications transparently, with an unbounded parallelism, without having to
provision any resources in a truly transparent way. This effectively provides functions with trans-
parent distributed shared memory, as long as they use correctly the existing supported APIs. The
overheads introduced when providing such support are explored in deliverable 5.3.

4.3 Serverless Python multiprocessing

As we have seen in the sections above, much work has been done both in academia and industry that
seek transparency in order to provide a means for application developers to easily scale their code in
the Cloud. However, there is a lack of novel transparency approaches that make use of novel state-of-
the-art Cloud technologies, such as serverless services like Function as a Service. At the Cloudbutton
project, we believe that serverless services, like disaggregated compute (FaaS) and storage (Cloud
Object Storage), provide an opportunity for applications to transparently scale in a massive manner,
as long as we comply with access transparency.

As explained before, there are many ways towards transparency. A simple one is at the applica-

Page 11 of 98

H2020 825184 RIA
20/07/2022 CloudButton

tion level: if the parallel programming interface used by the application leverages remote disaggre-
gated resources instead of local resources, but maintain the same interface, then we could provide a
drop-in library replacement and port local-parallel applications to distributed Cloud instantly with
no prior modifications. This objective is ambitious since one cannot just replace local resources with
disaggregated resources and expect the same behaviour or performance, since local latencies are
much lower compared to network latencies [19].

Pr
oc

es
s

Po
ol

Qu
eu

e

Lo
ck

M
an

ag
er

Co
nd

iti
on

Va
lu

e

Pi
pe

Ar
ra

y

Se
m

ap
ho

re

0 %

10 %

20 %

30 %

40 %
Pe

rc
en

t m
ul

tip
ro

ce
ss

in
g

ab
st

ra
ct

io
n

us
ag

e

Figure 1: Percentage of usage of the main multiprocessing abstractions of the top 100 most starred
GitHub Python repositories that use multiprocessing.

Nevertheless, not all parallel programming models require intensive access to shared memory.
On the contrary, many parallel applications just rely on communication and synchronization prim-
itives that could be efficiently disaggregated. In this line, the Python programming language uses
processes to achieve true parallelism. Shared state in Python multiprocessing mainly consists of mes-
sage passing (Pipes, Queues) or remote calls to other processes (Managers). To reinforce this point,
we have analyzed the top 100 most starred repositories on GitHub that use Python multiprocessing
and found out that Queues and Managers are the most used abstractions for state sharing (Figure 1).
In this aspect, the problems and limitations caused by distributed shared memories would not ap-
ply, thus transparently adapting multiprocessing Python applications to a distributed environment
is more feasible.

In line with Cloudbutton project objectives, we have conducted a performance study [38] to eval-
uate if the inherent scalability of serverless functions, together with a disaggregated and consistent
in-memory storage component, enables to transparently run unmodified Python multiprocessing
applications over disaggregated serverless compute resources at scale. We compared the same ap-
plication with the same workload both in a VM (Virtual Machine) on AWS EC2 and with serverless
functions on AWS Lambda, in order to compare execution time, speedup, parallelism and to deter-
mine the possible overheads originated by moving to a distributed environment.

For this purpose, we have extended the Lithops serverless computing framework with a mod-
ule that fully implements the Python multiprocessing interface. This re-implementation leverages
serverless functions for processes and Redis database for stateful multiprocessing abstractions (shared
state, queues, locks . . .). Python applications written with the multiprocessing library can then be
transparently ported to the Cloud by only changing the import statement. An overview of the gen-
eral architecture is depcited in Figure 2.
I Disaggregated compute resources: Computation abstractions (like Process and Pool) leverage
the Lithops serverless computing framework. Lithops acts as an abstraction layer on top of AWS
Lambda, which enables to execute local serial code over massively parallel serverless functions. A
Process is mapped to a single Lithops function worker. However, the Pool abstraction allows to
reuse functions for several consecutive operations on the Pool (like map or apply_async). A job queue
pattern has been implemented where workers are long-lived functions that consume tasks from a
queue stored in Redis. Applying jobs onto a Pool enqueues tasks to the Redis list instead of invoking
new functions. This reduces invocation overhead and prevents stragglers.

Page 12 of 98

H2020 825184 RIA
20/07/2022 CloudButton

lithops.multiprocessing

Process Pool

lithops
FunctionExecutor

Manager

Lock Queue

open

dict

os.path

JobQueue

HASHSET

STRING
LISTLithops

Worker Storage
Bucket

openManager

Lock Queue

AWS

S3

AWS

EC2

AWS

Lambda

LIST

Figure 2: Architecture diagram.

I Disaggregated memory resources: Inter-process Communication (IPC) and synchronization ab-
stractions (like Lock and Queue) are implemented using Redis [39] as a key-value in-memory database.
A serverful component is needed to keep the shared state since serverless functions lack addressing
and direct communication. Shared objects follow a pattern in which each resource (Queue, Pipe...)
acts as a proxy that access the unique key-value pair in Redis. Redis’ different data types and op-
erations facilitate the implementation of stateful abstractions. For example, blocking operations like
Queue.get() make use of the LIST type with the blocking command BLPOP.
I Disaggregated storage resources: We have also implemented a replica of Python’s built-in open
function and the os.path module which allows to transparently read and write files and directories
stored on S3 as if it were a local file system. This way, processes can transparently save or recover
state to/from storage. However, since object storage works with immutable data, it is not possible
to modify or expand (append) a file as it would be done in a traditional network file system without
having to rewrite the entire file.

The validation result [38] demonstrates that applications which use stateful abstractions based
on message passing, such as queues or pipes, are easy to disaggregate and that the overheads in-
troduced are negligible, obtaining good performance in comparison to the same application running
in a big standalone VM. We remark that the port is done by replacing a single line of code, which
is a huge deal for scientific application developers that want to massively exploit the parallelism
of applications and to further reduce the execution time by increasing parallelism speedup. Access
transparency is a key to simplify the whole process of moving applications to the Cloud: legacy ap-
plications benefit from access transparency since architecture re-engineering would not be required
anymore, and data scientists that are familiar with local-parallel programming can instantly and ef-
fortlessly scale their code in the Cloud to process bigger workloads.

The conclusion of our work states that Python’s multiprocessing message-passing shared state
design is a clear facilitator towards seamlessly porting local-parallel applications over disaggregated
serverless resources in the Cloud. Other programming languages that share the same memory ad-
dress space would be much more difficult to transparently disaggregate at this level. Moreover,
performance is severely affected if shared memory abstractions are heavily used, since distributed
shared memory will never be as fast as local shared memory. In addition, we require programming
interfaces where compute resources (such as processes) or state resources (such as queues) are clearly
defined.

In conclusion, access transparency is currently possible with some caveats. However, we are
optimistic that network latencies will be reduced, and therefore overheads too, so that access trans-
parency will provide ability to program the Cloud as a parallel Super-Computer, thus hiding the
complexities of distributed systems.

Page 13 of 98

H2020 825184 RIA
20/07/2022 CloudButton

4.4 Limits of disaggregation and transparency

Current data center networks already enable disk storage disaggregation [40], where reads from local
disk are comparable (10ms) to reads from the network. In contrast, creating a thread in Linux takes
about 10 µs, still far from the 15ms/100ms (warm/cold) achieved today in FaaS settings. With that,
compute disaggregation is already feasible when job time renders these delays negligible.

Advances in datacenter networking and NVMs have reduced access to networked storage to 1
µs, however this is still an order of magnitude slower than local memory accesses which are in the
nanosecond range [22] (100ns), and local cache accesses in the 4ns-30ns range. This means that local
memory cannot be neglected, and should be smartly leveraged by memory disaggregation efforts
[41]. Existing efforts in memory disaggregation [42, 30, 43, 15] strive to play in the µs range, which
can be a limiting factor.

This is directly related to locality and affinity requirements for many stateful applications. The
systems community is starting to acknowledge that stateful services need a different programming
model and resource management than the stateless ones [25, 6]. Stateful services have very different
requirements of coordination, consistency, scalability and fault tolerance, and they need to be ad-
dressed differently. Stateful services show the limits of disaggregation versus locality, since in some
scenarios locality still matters.

For now, locality still plays a key role in stateful distributed applications. For example: (i) where
huge data movements still are a penalty and memory-locality can be still useful to avoid data seri-
alization costs; (ii) where specialized hardware like GPUs must be used [33]; in (iii) some iterative
machine-learning algorithms [44]; in (iv) simulators, interactive agents or actors[45].

Finally, another important limitation is scaling transparency, which means that applications can
expand in scale without changes to the system structure or the application algorithms. If the local
programming model was designed to use a fixed amount of resources, there is no magic way of
transparently achieving scalability, not to mention elasticity.

Workloads that do not need elasticity, such as enterprise batch jobs or scientific simulations, can
use disaggregated resources the same way as local as they do not need scalability. However, for more
user driven and interactive services, such as internal enterprise web applications, simple porting of
the executables (sometimes referred as “lift-and-shift“) is rarely enough. The unchanged code is not
able to take advantage of the elasticity of disaggregated resources and it is expensive to run code that
is not used.

4.5 Challenges ahead

Let us review the major challenges to enable transparency for many applications:

• Granular middleware and locality: In line with granular computing [25, 22], we require mi-
crosecond latencies in existing middleware (compute, storage, memory, communication). In
particular, there is a need to handle extremely short instantiation and execution times and
more lightweight container technologies. We also require microsecond latencies in disaggre-
gated storage and memory, messaging and collective communication.

Granular applications are amenable to fine-grained elastic scaling, but this will not provide
adequate performance without data locality. Locality and fine-grained resource management
may also reduce the current cost of disaggregated resources. Locality is also needed to scale
stateful services with different requirements of coordination, concurrency, consistency, distri-
bution, scalability and fault tolerance. But existing FaaS services provide very limited locality/
affinity mechanisms and limited networking, precluding inter-function communications. We
foresee that next-generation container technologies may enable inter-container communication
and provide affinity services for grouping related entities (e.g. gang scheduling [33]).

• Memory disaggregation and Computational memory: Disaggregated memory is still an open
challenge and there is no available Cloud offering in this line. Many cluster technologies like
Apache Spark, Dask, or Apache Ray rely on coupled and difficult-to-scale in-memory storage.

Page 14 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Fast disaggregated memory and storage services [42, 15] can facilitate the elasticity of many
cluster technologies [46].

An important problem here is that disaggregated memory services cannot ignore the memory
available in existing server-centric nodes in most Cloud providers. One option is to combine
both local and remote memory resources efficiently [41]. Another potential solution here is
the recent line on computational memory [47] and in-memory computing devices. Compute
and memory locality (similar to mammalian brain where memory and processing are deeply
interconnected) may considerably enhance computational efficiency.

• Virtualization Accessing disaggregated resources in a transparent manner requires a form of
lightweight, flexible virtualization that does not currently exist. This virtualization must inter-
cept computation and memory management to provide access to disaggregated resources, and
must do so with native-like performance and no input from the programmer. Current serverless
platforms use Linux containers and VMs for virtualization [48, 49], which have proven to be too
heavyweight for fine-grained scaling, and inappropriate for stateful applications [34, 25, 6, 50].
Software-based virtualization is a more lightweight alternative that is seeing adoption in the
serverless context [51, 34], and as a replacement for Docker [52], but is not yet mature enough
to transparently support non-trivial existing applications.

Virtualization necessarily defines an interface between users’ code and the underlying system,
but the nature of this interface in a transparent disaggregated context is unclear. Exposing a
full Linux API makes porting legacy applications easy as shown in LegoOS [27], but requires
heavy engineering and introduces historical idiosyncrasies such as fork [53]. WASI [37] aims
to provide lightweight virtualization with a subset of POSIX-like calls and a custom libc, but
can only support a small subset of existing C/C++ applications. Platform-independent run-
times such as GraalVM [54] raise the virtualization layer into the language runtime itself. This
affords flexibility in supporting a range of underlying hardware, but is restricted to a a subset
of programming languages and applications.

• Elastic programming models and developer experience: In some cases, virtualization tech-
nologies cannot solve problems like scaling transparency if the code is programmed to use a
fixed amount of resources. We then need elastic programming models for local machines that
can be used without change when running over Cloud resources. Such elastic models should
take care of providing the different transparency types (scaling, failure, replication, location, ac-
cess) and other aspects of application behavior when it is moved between local and distributed
environments. The local executable APIs may need to be expanded to include elastic program-
ming abstractions for processes, memory, and storage.

To fulfill the vision of disaggregation and transparency it will also be critical to provide tools
for developers, enabling them to code both locally and remotely in the same manner with full
transparency. Developers will need to be able to use tools to debug, monitor, profile, and if
necessary access control planes to optimize their applications for cost and performance.

• Optimized deployment: Existing applications are a blackbox for the cloud, but the transition
will imply a “compile to the Cloud“ process. In this case, the Cloud will have access over
applications’ life cycle and it will be able to optimize their execution performance and cost. This
means that they can perform static analysis to predict resource requirements, dependencies
and potential for hardware acceleration. Future Cloud orchestration services will explicitly
leverage data dependencies and execution requirements for improving workloads and resource
management thanks to machine learning techniques [55, 56]. This compile process will also
allow advanced debugging mechanisms for Cloud applications.

Transparency efforts for different types of applications will require customizable control planes
for applications. Such customization will be based on advanced observability and fast orches-
tration mechanisms relying on standard services and protocols. Monitoring and interception

Page 15 of 98

H2020 825184 RIA
20/07/2022 CloudButton

of the different resources (compute, storage, memory, network) should be available and even
integrated into the data center, enabling coordinated actuators at different levels. This can en-
able the creation of millions of tiny control planes [57] adapted to the different applications and
programming models.

We argue that full transparency will be possible soon in the Cloud thanks to low latency resource
disaggregation. We foresee that next generation serverless technologies may overcome the limita-
tions exposed by Waldo et al. [19] more than twenty five years ago. In the next years, we will be able
to develop programs without taking care of address spaces, while a modern cloud environment will
transparently and efficiently execute those on disaggregated resources.

The next frontier for transparency is to go beyond the boundaries of the data center, and seam-
lessly support heterogeneous resources in the Cloud Continuum (Hybrid/Edge/Federated/Cloud).
Another important challenge is to devise elastic parallel programming models for a single machine
that can transparently leverage heterogeneous resources in the Cloud Continuum.

Page 16 of 98

H2020 825184 RIA
20/07/2022 CloudButton

5 CloudButton Architecture

5.1 Overall view

The main goal of CloudButton is to simplify Big Data applications thanks to serverless computing.
Our recent vision paper entitled “Serverless End Game: Disaggregation enabling transparency” [2] is pre-
cisely explaining how the disaggregation of computing resources enabled by serverless computing
technologies is going to enable almost full transparency.

This vision has long-lasting implications for the development of applications in the Cloud. In
particular, it implies that we can move almost unmodified local applications to the Cloud. When our
program uses threads and processes, CloudButton transparently runs this code in remote containers
(FaaS, Knative), when our program accesses files and directories, CloudButton transparently resorts
to Cloud remote storage (Amazon S3, IBM COS, Ceph, etc.), and when our program interacts with
memory, CloudButton transparently accesses disaggregated memory (Infinispan, Redis).

This also means that CloudButton aims to minimize the creation of new Cloud APIs. Instead, it re-
lies on the interception of existing programming libraries for accessing remote computing resources.
The project is targeting three major software environments: Python, Java, and C++.

• Python is now a very popular language for data analysts with popular tools like Python Jupyter
Notebooks and libraries like Numpy, Pandas, or scikitlearn;

• Java is also heavily used in MapReduce and machine learning environments such as Apache
Spark, Hadoop of SMILE ML library, among others;

• Finally, the project focuses on supporting HPC applications typically written in C/C++ and
using popular environments such as MPI and OpenMP.

As we see in Figure 3, CloudButton project presents three main pillars which correspond to the
aforementioned Python, Java, and C++ environments. In the three cases, we see how the project is
transparently decoupling the underlying disaggregated Cloud resources, namely compute, storage,
and memory.

Aside from being built on top of disaggregated resources, the three software pillars of Figure 3
share the CloudButton goal of expressing a wide range of existing data-intensive applications with
minimal changes.

In the case of Python, IBM and URV are leading efforts around Lithops and the interception of
native Python libraries like multiprocessing and concurrent.futures libraries. Porting an existing
Python multi-threaded application that uses multiprocessing can be as simple as modifying some
import statements. These efforts have demonstrated simplicity by moving very different Python ap-
plications and notebooks to the Cloud in Genomics, Metabolomics and GeoSpatial use cases. There
are also ongoing efforts to transparently support Python libraries like Scikitlearn on top of our server-
less disaggregated software stack. As we explain in WP3 and D3.2 deliverable, Lithops is a popular
open source project with an active community and already used in production inside IBM.

In the case of Java, IMT and URV are leading efforts around the Crucial Java Serverless Toolkit.
Crucial is also intercepting the standard Java Concurrency APIs, by providing a Serverless Execu-
tor that can run threads over Serverless Functions. Crucial also provides shared mutable state and
synchronisation primitives in the Concurrency API (Barrier, AtomicLong, AtomicList) over RedHat
Infinispan In-Memory middleware. Thanks to these APIs, we demonstrated different machine learn-
ing algorithms and applications like KMeans, Logistic Regression, and Random Forests in SMILE, a
Java ML library [58]. As we explain in WP4 and D4.2 deliverable, Crucial is an open source project
that leverages and benefits from Redhat Infinispan’s Java open source community.

In the case of C/C++ and HPC, IMP is leading efforts around FaasM WebAssembly serverless
Toolkit. WebAssemby is a popular Intermediate Language that allows the compilation/execution of
multiple programming languages like C/C++, Javascript and many others. FaasM is intercepting
POSIX APIs in WebAssembly to execute threads in serverless containers that can also benefit from
locality and shared memory. IMP is demonstrating that is is possible to port existing C++ HPC

Page 17 of 98

H2020 825184 RIA
20/07/2022 CloudButton

applications using MPI and OpenMP. As we explain in WP5 and D5.2 deliverable, FaasM is an open
source project that has raised the interest of the WebAssembly and serverless community.

In summary, all three pillars software outcomes are committed to the global objective of providing
simple programming models for serverless cloud infrastructures targeted to existing data-intensive
applications and implying as few changes as possible.

Figure 3: Big picture of the CloudButton architecture

5.1.1 Integration among the different components and contributions

As the project advances, we have seen an increase on the maturity and popularity of Knative and
CNCF technologies as standard serverless building blocks for Kubernetes. For this reason, we be-
lieve that Knative can be the unifying framework for all the software components created in the
context of the CloudButton project. Moreover, the adoption of Knative is a step towards serverless
standardization: it simplifies the building of container-based, serverless applications that can deploy
and run on any cloud: public, private, and hybrid.

On the one hand, CNCF K8s is becoming a Cloud standard, with many public Cloud providers
supporting those technologies. But Knative as a serverless layer over K8s has a strong potential for
portability and standardisation. Google is now offering a multi-tenant serverlss K8s and Knative in
their Google Cloud Run service, but many others are following like IBM Code Engine, VMware/Dell,
NetApp, or Alibaba among others.

The three main pillars of the project run on top of CNCF technologies in a transparent way. For
instance, Lithops has support for running over Knative on any Kubernetes cluster [59], and Faasm is
already integrated with Knative [60].

ATOS’s efforts are focused on instrumentation and SLAs of Knative clusters using K8s technolo-
gies. This means that all their work is compatible with the different software stacks built on top of it.

Page 18 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Also, the testbed provided by ATOS is built around Knative tachnologies.
RHT Infinispan has actively worked in the integration of Infinispan with K8s technologies, first

providing a K8s operator, and then providing an auto-scaling service that can be integrated in a
Knative cluster. Redhat also improved the interoperability of Infinispan with other programming
languages. Again, all pillars can benefit from an Infinispan in-memory service deployed in the Kna-
tive cluster and offering auto-scaling support.

Finally, an essential service for interconnecting and integrating different services is Serverless
Orchestration relying on Knative and CNCF CloudEvents standards. We refer here to WP3 D3.2
section on Serverless Orchestration, and in particular to the recent publication title "TriggerFlow:
Trigger-based Orchestration of Serverless Workflows" [61]. In this work, we present an integrated
event-based architecture that enables the orchestration of Cloud technologies.

IBM and URV are working together in the integraton of serverless orchestration technologies
using Knative Eventing, KEDA, but also serverless orchestrators for K8s like Argo and KubeFlow. In
the end of the project, we will be able to orchestrate Big Data pipelines with stages using different
technologies like Python, Java or FaasM.

The convergence towards Knative will enable the orchestration of serverless workflows using dif-
ferent components of the CloudButton architecture. In order to allow these workflows orchestration,
each component will provide an invocation endpoint and termination events. Platforms like ARGO
and Triggerflow (developed in the context of this project) will be used to put together workflow
steps implemented with different serverless technologies and even other steps that require serverful
components.

5.2 Software Releases

In this section, we will describe the different software projects that make up the main software com-
ponents of the CloudButton Architecture. The unifying framework for all components is the server-
less cluster using CNCF K8s technologies.

• Serverless Infrastructure (OpenWhisk, Knative, Prometheus): IBM and ATOS have integrated
SLA monitoring components in Kubernetes in order to provide fault-tolerance, and QoS sup-
port to Serverless Data Analytics pipelines.

• Serverless Orchestration (Airflow, Kubeflow, Argo): IBM and URV have created tools enabling
the orchestration of Big Data pipelines over serverless functions and containers. The tools (Trig-
gerFlow, Argo, Aitflow plugin) provide declarative DAGs (Directed Acyclic Graphs) for the
definition of the pipelines. Such DAGs are leveraged by the underlying Serverless Infrastruc-
ture to optimize resource usage. For example, we have extended Apache Airflow with new
FaaS Big Data Operators [62] and we also have adapted Argo for Big Data pipelines on server-
less containers.

• Mutable State Middleware (Crucial, Infinispan): IMT, URV, and RHAT have created a novel
disaggregated mutable middleware including consistent data structures and programming ab-
stractions for stateful Big Data analytics over Infinispan. We offer proof of concept machine
learning algorithms packaged as cloud functions that can be executed and orchestrated by
CloudButton Core in a K8s cluster. RHAT has also integrated Infinispan and this middle-
ware in the K8s stack with a K8s operator, and it provides controllers for flexible auto-scaling
of ephemeral and replicated Infinispan clusters. For an in-depth description of the mutable
state middleware see D4.2 [63]. Source code repositories: https://github.com/danielBCN/
crucial-dso / https://github.com/infinispan/infinispan.

• WebAssembly FaaS Runtime (Faasm): Imperial have created a novel lightweight and polyglot
FaaS runtime over WebAssembly technology. This middleware offers code-shipping models
where lightweight functions can be colocated and access local shared memory in an efficient
way. Faasm is described in detail in D5.2 [64]. Source code repository: https://github.com/
lsds/faasm.

Page 19 of 98

https://github.com/danielBCN/crucial-dso
https://github.com/danielBCN/crucial-dso
https://github.com/infinispan/infinispan
https://github.com/lsds/faasm
https://github.com/lsds/faasm

H2020 825184 RIA
20/07/2022 CloudButton

• Lithops toolkit multiprocessing API: a multicloud framework that enables the transparent ex-
ecution of unmodified, regular Python code against disaggregated cloud resources. It pro-
vides the same API as Python’s standard multiprocessing and concurrent.futures libraries.
Source code repository: https://github.com/cloudbutton/cloudbutton.

5.2.1 Multi-cloud support

Current serverless computing platforms range from the traditional Functions-as-a-Service [65, 66]
to the newest Container-as-a-Service [67, 68] services. Moreover, tens of open-source frameworks
backed by Kubernetes are available in the community [69, 70]. With such an array of options, it is
not unreasonable for a user to wonder: “Which serverless computing service should I use?”, particularly
under the shadow of the vendor lock-in problem. Vendor-specific APIs and SDKs make it difficult
for users to move their applications from one underperforming cloud to another, simply because
switching to a better provider is deemed too costly. In this sense, the continuous evolution of server-
less APIs and features does nothing but to further aggravate this problem. In such a scenario, a
multi-cloud approach can bring the needed flexibility to leverage the best of each cloud platform and
overcome vendor lock-in, so developers can fully enjoy the benefits of serverless computing.

Therefore, the CloudButton toolkit adopts a multicloud-agnostic architecture, in an effort to en-
sure portability and overcome vendor lock-in problems. The CloudButton toolkit enables transpar-
ent access for users to virtually unbounded multicloud resources as nothing more than writing a
program with a familiar language.

Figure 4: CloudButton Serverless Benchmark – IBM Cloud Functions results

An interesting example of the multi-cloud support is the CloudButton Serverless Benchmark
(https://github.com/lithops-cloud/applications/tree/master/benchmarks), a helpful tool to com-
pare serverless offerings (in terms of compute and storage) across different public cloud providers.
The benchmark evaluates compute power and scalability of cloud providers by running multiple
compute intensive tasks concurrently. It also evaluates the throughput of read and write operations
to the object storage services of different cloud providers. As of today, the benchmark supports 6
FaaS services (IBM Cloud Functions, AWS Lambda, Microsoft Azure Functions, Google Cloud Func-
tions, Google Cloud Run, and Alibaba Aliyun Function Compute) and 5 object storage services (IBM
COS, AWS S3, Microsoft Azure Blob, Google Storage, Alibaba Aliyun Object Storage Service).

Page 20 of 98

https://github.com/cloudbutton/cloudbutton
https://github.com/lithops-cloud/applications/tree/master/benchmarks

H2020 825184 RIA
20/07/2022 CloudButton

6 Metabolomics use case

In the current reporting period, we have achieved all the planned objectives.

6.1 Description of the use case

Spatial metabolomics is a field of omics research focused on the detection and interpretation of
metabolites, lipids, drugs, and other small molecules in the spatial context of cells, tissues, organs,
and organisms. Spatial metabolomics is a rapidly emerging field, fueled by the strong and ever-
growing need in biology and medicine to characterize biological phenomena in situ, as well as by
the recently revealed key roles of metabolism in health and disease. This field is concerned with a
variety of biomedical questions, including the tumor molecular microenvironment, functions of im-
mune cells during homeostasis and immunotherapy, interactions between host and microbiota and
their contribution to inflammation, regulation of early development, metabolic regulation of epige-
netics, and metabolic dysregulations during infection and inflammation. Over the past decade, this
growing interest has stimulated rapid progress in the development of enabling technologies – in par-
ticular, imaging mass spectrometry (MS) – that have achieved unprecedented sensitivity, coverage,
and robustness as they have become accessible to biologists (Figure 5).

Figure 5: An imaging mass spectrometry (MS) dataset represents a collection of spectra acquired
from a raster of pixels representing the surface of a tissue section. An ion image represents relative
intensities of the ion across all pixels. An imaging MS dataset can represent spatial localization of up
to 103 molecules.

We have developed METASPACE, a global community platform for spatial metabolomics pop-
ulated by a large community of users. The cornerstone of METASPACE is a computational engine
for metabolite annotation which searches for metabolites, lipids, and other small molecules in an
imaging MS dataset. The engine estimates the False Discovery Rate (FDR) of metabolite annota-
tions that provides quality control and – as demonstrated in other -omics – makes annotated spa-
tial metabolomes comparable between datasets, experiments, and laboratories. We created a user-
friendly web app for data submission and for interactive exploration of annotated metabolite im-
ages. By sharing their results publicly, METASPACE users cooperatively created and continuously
populate a knowledge base of spatial metabolomes.

Earlier in the Horizon2020 project METASPACE (2015-2018), was open-source cloud software
METASPACE. METASPACE integrates a high-performance cloud computing engine, a webapp for
data submission, results search, browsing, analysis, and sharing, as well as a knowledgebase of pri-
vate and public datasets and results from them. Since 2017, METASPACE became a major tool in
spatial metabolomics with over 1000 registered users from over 100 labs, with many using it every
day (Figure 6). We processed almost 20K submissions, with over 1K submissions per month lately.
Importantly, 30% of these submissions were shared publicly. This represents the largest public data
collection in spatial metabolomics (and one of the largest in metabolomics in general) and, with pro-
vided metadata, a continuously-populated knowledgebase of spatial metabolomes.

Importantly, METASPACE requires scalable computing, taking into account the growth of the
field (Figure 7) as well as the diversity of the datasets submitted to METASPACE in its nature and

Page 21 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 6: The METASPACE cloud platform (http://metaspace2020.eu), the geographical map of its
worldwide usage, the growing numbers of submissions and the key points characterizing the big
data aspects, its growth, community support, and scientific impact.

size (Figure 8).

6.2 METASPACE and the Big Data challenge

METASPACE is a big data cloud platform used by scientists from all over the globe to submit multi-
gigabyte datasets generated in various experiments by various instruments, often with a high un-
certainty in the quality or content of the data. The critical aspect in its operation is that the data is
sometimes too big to load entirely into memory. Every pixel in the spatial metabolomics image can
be considered as a data point containing thousands of molecules, with the number of pixels reaching
as high as a million. This generates huge amounts of data (sometimes larger than 1TB) that can’t
be loaded entirely into memory but still needs to be sorted, chunked, annotated, and collected to-
gether. The challenges this presents are how to process data in concurrent tasks running on different
machines and how to assemble the results and represents an example of the big data analysis. Obvi-
ously, we don’t have the luxury of having a super machine with unlimited memory and computing
power to load all data into memory and process it there. But even if we did, it would still be chal-
lenging to efficiently utilize the computing resources of this super machine since developers would
need to take care of running multiple threads, processes, etc. in coordination. The METASPACE
knowledgebase has two components: raw imaging mass spectrometry data and metabolite images
produced from the raw data by our bioinformatics engine. Each raw dataset is a multi-gigabyte hy-
perspectral image of over 1 million of channels. Metabolite images are obtained from the raw data
with the help of advanced custom bioinformatics and data-intensive computing currently powered
by the Apache Spark technology. However, even this implementation is not scalable enough to deal
with the big data of ever-growing and diverse spatial metabolomics datasets, in particular due to the
rising popularity of our platform. In addition, the results represent a fraction of percent of the raw

Page 22 of 98

http://metaspace2020.eu

H2020 825184 RIA
20/07/2022 CloudButton

Figure 7: The popularity of different technologies in the life sciences and biomedicine and their evo-
lution over time. The plot shows the numbers of PubMed-indexed publications in a given year con-
taining the keywords shown in the figure key. We highlight three time periods, before 2009, from
2009 until 2015, and after 2015, which we discuss in the main text. The inset shows the popularity of
several technologies for metabolomics applications from 1995 until 2018.

data and are accessed either through a web-app for interactive exploration or through a GraphQL
API particularly by using Python Jupyter notebooks. However, currently most of the raw data is
left unexplored, often called as "black matter" in spatial metabolomics. The main challenge of using
Apache Spark is the need to hard-code or predict in advance the resources needed at every point in
time of processing the data. This is exactly the deficiency that can be addressed by the serverless
processing paradigm.

6.3 METASPACE and CloudButton

Serverless paradigm is a very attractive approach to resolve challenges of METASPACE. It can al-
most instantaneously allocate large amounts computing resources and users only pay for these ac-
tually used resources. However, there is still the remaining challenge of how to effectively scale the
METASPACE engine for serverless processing of a dataset stored in the cloud object storage, how
to monitor the executions, and execute all tasks as a single “logical” job in IBM Cloud Functions. It
also a challenge how to decide on right parallelism and resources required per each annotation job.
And obviously we don’t want to rewrite METASPACE from scratch to leverage serverless, rather in-
tegrate serverless into METASPACE by using push to the cloud approach. To address the challenges

Page 23 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 8: The diversity of the big data in METASPACE covering multiple submitting labs, datasets
from various technological platforms, and biological sourses of the data.

above, this is exactly what we addressed in the Lithops framework developed in the context of the
European Horizon2020 project CloudButton. Together with IBM Research, we have developed our
solution based on the open source Lithops framework. Lithops introduces serverless computing with
a minimal effort and brings automated scalability for massive data processing. The goal of Lithops is
to enable an easy move to serverless by providing a “push to the cloud” experience: Users can focus
on their code, while Lithops focuses on the code execution in the cloud.

6.4 METASPACE-Lithops - The first step to Serverless

EMBL and IBM together have developed a serverless implementation of the METASPACE. The im-
plementation was deployed over IBM Cloud and is available at our GitHub https://github.com/
metaspace2020/Lithops-METASPACE with 288 commits as of July 2022 (Figure 11): The figure Fig-
ure 16 shows a high-level approach of our design. Our core approach is decentralized and com-
pletely serverless, where we let the Lithops framework determine the appropriate scale of parallelism
needed to process input datasets. To achieve this, our code evaluates the input datasets and then de-
cides on the number of serverless actions required, with the aim to maximize performance and the
costs of the processing.

This approach allows us to dynamically adjust the amount of compute resources while the data
is being processed—which is in contrast to a Spark-based approach, where the amount of compute
resources is determined before starting the data processing and can’t be adjusted as the processing
progresses.

Figure 12 demonstrates the key aspects of using an early implementation of the serverless version

Page 24 of 98

https://github.com/metaspace2020/Lithops-METASPACE
https://github.com/metaspace2020/Lithops-METASPACE

H2020 825184 RIA
20/07/2022 CloudButton

Figure 9: The workflow of the serverful METASPACE (existed before this project) indicating the steps
and the numbers of invocations of every step for processing of one dataset).

Figure 10: The architecture of serverless METASPACE

Page 25 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 11: The GitHub repository of the Lithops version of METASPACE which is deployed in pro-
duction since March 2021.

of METASPACE, implemented in PyWren (early version of Lithops).

6.5 Experiments

EMBL has prepared three experiments representing the main computing scenarios in METASPACE.
Experiment 1, "Typical use case", is representative of a normal use-case on METASPACE, which
makes it suitable for head-to-head comparisons. There is often limited time available on the higher-
spec PC used for initial data capture as it is a shared resource, so usually the analysis will be per-
formed from scientists’ or students’ lower-spec laptops. Experiment 2, "Interactive reprocessing", is
representative of a new type of functionality that we currently don’t support in METASPACE because
it’s uneconomical with the serverful approach. While looking for specific compounds, scientists tend
to have relatively short lists of molecules of interest, and iteratively try different adducts or modifiers
until they find the data they’re interested in. Experiment 3, "Stress test", aims to ensure that the lim-
its of are similar to METASPACE, this is one of the larger datasets that has been processed. For every
experiment, we have prepared the relevant datasets and databases as well as prepared the metrics to
be used for benchmarking.

6.6 Benchmarking datasets and metrics

EMBL has prepared the benchmark datasets and shared them with the partners as well as publicly
through the specially-setup repository: https://github.com/metaspace2020/Lithops-METASPACE#example-
datasets. This included datasets from six tissue sections provided by EMBL and our collaborators, as
well as 12 molecular databases which are used in METASPACE for molecular annotation. In every
experiment, molecules from a database are searched for in a dataset. The datasets and databases
were selected so that their combinations represent various scenarios: from small to typical to large to
huge computing scenarios.

The datasets sizes range from 0.05 GB to 56.7 GB (see details at https://github.com/metaspace2020/Lithops-
METASPACE/tree/master/metabolomics#dataset-configurations) that is representative for the highly
variable sizes of datasets processed by METASPACE.

EMBL has formulated the following metrics to be used for benchmarking:

Page 26 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 12: Demonstration of the key aspects of using an early version of serverless METASPACE.

• total processing time

• cloud provider costs, and finally

• developer time

For every experiment, we decided which metrics are critical and which goals should be achieved
(Figure 13).

After performing initial evaluation benchmark, we have identified 3 bottlenecks which were re-
sponsible for 80%-90% of processing time which are at the same time “embarrassingly parallelizable”
(Figure 15). Moreover, we have identified 2 bottlenecks (the partitioning steps) which are responsi-
ble for most of the development pain (Figure. We also concluded while Serverless is very attractive
solution, some of the legacy code performs better when leverage large memory, which is not avail-
able for FaaS solutions. To make METASPACE most efficient, while enabling it to run some of the
legacy code with large memory and some code distrbute as a serverless invocation, we had come
with hybrid approach which appears to be the most effective for METASPACE.

Page 27 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 13: The specific use cases formulated for benchmarking of the serverless version of
METASPACE, the decision diagram for evaluating the improvements compared to the state-of-
the-art serverful version, as well as a screenshot from our GitHub repository where we have
prepared Jupyter notebooks for every specific use case https://github.com/metaspace2020/
pywren-annotation-pipeline#example-notebooks.

6.7 METASPACE-Lithops - The hybrid solution

We have designed a new architecture that would combine serverless and the use of large virtual
machines (VMs); see Figure 16.

In this unique approach, Lithops creates a powerful VM, deploy METASPACE sorting code into
this VM, perform the execution. Lithops monitors the VM, execution progress and upon comple-
tion, Lithops will persist the results into IBM Cloud Object Storage. Then Lithops will automatically
delete the VM once all results were persisted in the object storage. The next phase, Lithops will use
function as a service with parallel invocations as required, that will process dataset generated from
the previous stage. From user point of view, this is pure cloud button experience, since all happens
transparently to the user without him manually to create VMs, monitor execution, handle data trans-
fer, and so on. The hybrid implementation combining serverless and VMs is used in the production
version of METASPACE since March 2021.

Page 28 of 98

https://github.com/metaspace2020/pywren-annotation-pipeline#example-notebooks
https://github.com/metaspace2020/pywren-annotation-pipeline#example-notebooks

H2020 825184 RIA
20/07/2022 CloudButton

Figure 14: Overview of the datasets provided by EMBL and its collaborators for benchmarking the
serverless implementation of METASPACE. With owners permission, we have made these datasets
public through our GitHub https://github.com/metaspace2020/pywren-annotation-pipeline.

Figure 15: Analysis of the serverless implementation of METASPACE. We have identified bottlenecks
which are responsible for the majority of computational time and "developer pain" that led us to
developing a hybrid solution (see next section).

6.8 Benchmarking results, KPIs

For the benchmarking, EMBL and IBM have prepared Jupyter notebooks which use the serverless im-
plementation of METASPACE: https://github.com/metaspace2020/Lithops-METASPACE#running-the-example-notebooks.
Each notebook executes the serverless METASPACE and performs the benchmarking according to

Page 29 of 98

https://github.com/metaspace2020/pywren-annotation-pipeline
https://github.com/metaspace2020/Lithops-METASPACE#running-the-example-notebooks

H2020 825184 RIA
20/07/2022 CloudButton

Figure 16: Hybrid implementation of the METASPACE involving using large VMs for the parts crit-
ical either for performance or for easy of development. The hybrid implementation is used since
March 2021 in the production version of METASPACE.

Figure 17: The results of benchmarking the Lithops implementation of METASPACE as compared to
the previous serverful Apache Spark implementation.

the specified metrics.
The results of benchmarking the Lithops implementation of METASPACE as compared to the

previous serverful Apache Spark implementation is shown in Figure 17. For the Spark implemen-
tation, we used the AWS hotspot instances for estimating the costs. One can see that the Lithops

Page 30 of 98

H2020 825184 RIA
20/07/2022 CloudButton

implementation overall outperforms the Spark implementation in time and almost always but in one
case for a very large dataset outperforms it in cost.

Moreover, the serverless technology and in particular Lithops provides a competitive alternative
to Apache Spark in terms of the code readability and ease of development.

Page 31 of 98

H2020 825184 RIA
20/07/2022 CloudButton

7 Genomics use case

The importance of genomics to our society could hardly be overstated. An increasingly large num-
ber of applications have genomics at their focus — among them molecular cancer treatments, per-
sonalised medicine, and combating viral diseases. The recent worldwide reaction to Covid-19, and
the delivery of vaccines in a short time window, all hinged upon the availability of technology to
sequence genomic material (nucleic acids) quickly and effectively (Figure 18).

Figure 18: Phylogenetic tree of SARS-CoV-2, the virus causing Covid-19. Each point corresponds to a
viral sequence obtained from high-throughput sequencing data (source: https://nextstrain.org).

Genomics is a data- and compute-hungry science, rooted as it is in sequence analysis. Genomes
and their products (mainly DNA and RNA) are routinely sampled and decoded in order to establish
how the cellular machinery works in different species. This has spurred the production of a stag-
gering amount of sequence data, which results in several PB being added to global data stores every
year (Figure 19).

In light of this situation, it is obviously very difficult for any single institution to be able to keep
up. While high-performance computing (HPC) installations are becoming commonplace in biology
departments, it is also increasingly challenging to provide enough capacity to support demand peaks,
(re-)analyse public datasets produced by large consortia, or minimise the wall-clock time required by
a given analysis when that is needed – for instance, when performing surveillance-related tasks in
the domain of public health. The cloud would be an obvious solution to this problem, as it can supply
enough elasticity to accommodate exceptional demand in HPC power without the need for scientific
institutions to permanently acquire and maintain the corresponding physical infrastructure.

However, traditional cloud services are typically much more expensive than buying computing
hardware, which discourages medium- and large-sized institutions from giving up their HPC clus-
ters. With its offer of virtually unlimited computing power for a fraction of the cost of regular cloud
services, serverless computing might provide a cheaper, more scalable and more attractive alterna-

Page 32 of 98

https://nextstrain.org

H2020 825184 RIA
20/07/2022 CloudButton

Figure 19: European Nucleotide Archive and Sequence Read Archive growth [71].

tive for genomics workflows.
However, transitioning to the cloud has been so far a complicated process. While genomics-

centered solutions have been developed (for instance, [72]), they usually require the development
of specific procedures to rewrite/encapsulate existing workflows. On top of that, evaluating and
configuring the resources needed for each application is a daunting task due to the number of het-
erogeneous cloud providers and services.

Here we show how, by leveraging the power of the CloudButton toolkit, and Lithops in particular,
we were able to demonstrate semi-transparent porting to (mostly serverless) cloud of a number of
components and a workflow to perform high-throughput variant calling on genomic data.

7.1 Experiments description

The work we describe was performed as a collaboration of the James Hutton Institute, the partner in
charge of the genomic use case, and other partners (Imperial College and URV). In the following, we
will present four experiments:

1. Porting of alignment tools to FAASM. In collaboration with Imperial College, we explored how
to port tools to perform alignment of sequencing reads to a reference genome, which is a fre-
quent use case in genomics, to WebAssembly within the FAASM framework. This is a central
problem, as it highlights the fact that genomic applications are usually stateful, and an adapta-
tion to serverless frameworks requires adaptation of the existing code. We identified a solution
consisting in the splitting of the large indexes needed for alignment into smaller ones.

2. Development of general cloud toolkit components. In collaboration with the Cloudlab at URV,
we developed tools to tackle specific parallelisation tasks, i.e. FASTA and FASTQ file partition-
ing. Those are needed by most genomics workflows, and essential to port alignment tools to
(serverless) cloud, as identified during the previous stage. They also include the implemen-
tation of a stateful solution to identify optimal sequence alignments across cloud functions,

Page 33 of 98

H2020 825184 RIA
20/07/2022 CloudButton

and the implementation of a data-driven multi-function reduce architecture to integrate large
alignments obtained from different functions.

3. Porting of a variant calling pipeline to the CloudButton framework with Lithops. In collabora-
tion with the Cloudlab at URV, we used Lithops to port an existing variant calling pipeline
based on [73] and [74] to a serverless-centric solution. This represents the main embodiment of
our use case. It tackles a problem which is relevant in real-life cutting-edge applications (call-
ing variants is an essential step in, for instance, personalised medicine, cancer treatment, or the
typing of SARS-CoV-2/COVID-19 genomes) and demonstrates scalability, drastically reduced
wall-clock time, and cost-effectiveness.

4. Transparent conversion of legacy code. In collaboration with the Cloudlab at URV, we developed
tools to help with the transparent porting of existing code to the CloudButton framework, espe-
cially in connection with polyglot programming. More in detail, in this application we examine
how a large codebase written in OCaml [75] and based on a local parallelisation model can be
adapted to a (mostly) serverless architecture with a minimum number of changes, and provide
the first ingredients needed to do so.

Our experiments aim to demonstrate a number of facts, which are captured in suitable KPIs:

• Prove that our existing genomics workflows can be successfully ported to CloudButton archi-
tectures, producing the same scientific results

• Demonstrate that CloudButton-based implementations can scale up to very large external datasets
that we would not necessarily be able to store locally, or we would be unwilling to store locally
long-term. That opens the way to obtaining new biological insights, for instance from the com-
parison between our local datasets and larger datasets publicly available

• Demonstrate that wall-clock time taken by CloudButton-aware workflows can be substantially
reduced beyond what would be achievable on a large HPC node

• Evaluate efficiency/cost-effectiveness of cloud solutions versus local computing.

7.2 Integration of the genomics pipeline with FAASM

The first basic step performed by most genomics analysis workflows, and the first one we would
like to migrate to the cloud, is called the alignment of sequence reads to a reference genome. By this
we mean that, given a short chunk of DNA produced by a sequencer (a read), we want to find all
the regions in the genome having a similar sequence, up to a pre-determined amount of differences
between the read and the identified region. Equivalently, we want to locate all the regions in the
genome that might have originated the sequencing read, as the accumulation of reads allows us to
identify parts of the genome which are functionally active under different biological conditions (see
Figure 20). Doing so is a computationally expensive operation, which usually takes most of the time
used by analysis pipelines – the reference genome can be large and repetitive, one has to perform
string searches with mismatches due to possible errors in the read or the reference, and billions of
reads need to be processed, possibly more than once, for each experiment. The latter would suggest
that alignment is a good candidate task to be ported to serverless.

Unfortunately, things are not so straightforward. First of all, alignment requires a highly opti-
mised piece of HPC code. The code base for the GEM mapper [73] alone, which we would like to use
for our workflows, comprises several tens of thousands of lines of C code, and other steps are imple-
mented as a large library written in the OCaml [75] functional programming language. In addition,
and quite unfortunately, some algorithmic requirements do not translate straightforwardly to server-
less architectures. One example is the need for alignment programs based on the Ferragina-Manzini
index, such as the GEM mapper, to generate and store into memory a binary data structure known as
an index. The index is a transformed version of the reference genome; thanks to its design, it allows

Page 34 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 20: Transcriptional landscape of Marek’s disease virus, a virus causing cancer in chicken and
large economic losses to the poultry industry. The plot show the results of several RNA-sequencing
experiments as a genome browser. Local accumulations of reads due to alignment produce a biolog-
ically relevant signal.

to quickly find exact queries in the reference, ultimately making possible the implementation of fast
error-tolerant alignment algorithms for sequencing reads. Mammalian genomes such as the human
one are relatively large (about 3 billion nucleotides) and as a result the index for a whole human
genome can be bulky, ranging from several hundred MB to several GB, depending on the imple-
mentation. Unfortunately, such large amounts of memory are not generally available in a serverless
framework.

FAASM is a high-performance serverless runtime that isolates functions using WebAssembly [76].
As a consequence, FAASM can only execute functions that can be cross-compiled to WebAssembly.
Or, equivalently, languages with an LLVM front-end, and additionally limited support for Python
functions [77]. While there is no support for OCaml in WebAssembly, we examined and discussed
the best way to mitigate the problem of the statefulness of existing alignment tools for sequencing
data, and came up with a solution suitable to be implemented in WebAssembly and FAASM. Such a
solution is illustrated in Figure 21.

As is frequently the case for distributed computation, we can formulate our problem as two con-
ceptual phases that fit the Map/Reduce model: mapping, and merging. During the first mapping
phase, we split the sequencing reads into several data chunks, which are conceptually independent
- as each sequencing read is aligned independently to the reference genome, this step is embarrass-
ingly parallel. However, in order to reduce the amount of statefulness required by this step and
mitigate memory requirements, we also split the genomic reference into smaller chunks. It should be
noted that, while there is freedom in the amount of granularity adopted during this stage, splitting
into index chunks is not trivially parallel, as the alignments of each data chunk to the index chunks
will need to be collected and post-processed in the end in order to establish what the best ones are,
and discard the ones having low quality – this merging step is performed automatically when all the
reference genome is presented as a single index, but needs to be done externally if we want to split
the big index into smaller chunks. Also, by splitting the index we are doing redundant computations
at the expense of a higher degree of parallelism, which limits the amount of granularity we can reach.

As the code for the gem3-mapper is implemented in C, the mapping step can be ported to We-

Page 35 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 21: A scheme to parallelise sequence alignment and mitigate the problem of the stateful ge-
nomic index.

bAssembly using FAASM’s compilation toolchain [78]. The forked repository that allows to cross-
compile the GEM mapper is available on GitHub: https://github.com/faasm/gem3-mapper. Unfor-
tunately, however, the code for the merging step is written in OCaml, and at the time of this writing
we have not found a way to cross-compile OCaml to WebAssembly, thus hindering the adoption of
this step in FAASM.

However, it would be possible to port the full mapping step with Lithops, offloading the map-
ping step to the serverless back-end provided by FAASM and invoking the merging step from Lithops.
The whole pipeline integrated using CloudButton tools is summarised in Fig. 22. First, Lithops in-
vokes the mapping function through its FAASM back-end 1 , then FAASM’s mapping function fans
out to several parallel calls to the gem3-mapper function 2 . Each mapper function reads its input pair
(reads and index chunks) 3 and write to their output file once they are done 4 . At this point, the
merger code in OCaml, in a Python wrapper, is invoked from Lithops to merge all output files 6 , and
write the single merged result into the object store 7 . Lastly, the merger can invoke the downstream
pipeline 8 .

As a result of this work, we demonstrated that it is possible to port very complex genomic com-
ponents, such as the alignment step of sequencing reads to a genomic reference, to WebAssembly
with FAASM. We also identified a successful workaround (illustrated in Figure 21) to mitigate the
problem of statefulness presented by the alignment stage. However, considerations about transpar-
ent portability of code suggested to us that a more general way forward to make genomic pipelines
suitable for serverless computing would be by leveraging the flexibility of the Lithops framework.
The next sections describe progress and results in that direction.

Page 36 of 98

https://github.com/faasm/gem3-mapper

H2020 825184 RIA
20/07/2022 CloudButton

Figure 22: Integration of the genomics pipeline with FAASM and Lithops

7.3 General cloud genomic toolkit components with Lithops

7.3.1 FASTQ.GZ partitioner

Given its size, genomic data (such as FASTA and FASTQ files) is often stored in Gzip compressed files
(.gz). The built-in data-processing logic of Lithops integrates a data partitioner system that allows
to automatically split the dataset (usually a csv or a text file) into smaller chunks. However, the
Lithops partitioner was lacking an implementation for compressed files, and thus did not support
the partitioning of FASTQ.gz files, a key step in the parallelisation of the variant calling pipeline.
Therefore, a Gzip-compressed file partitioner was developed (coded in python and bash), specifically
for use within a Lithops map_reduce() implementation, though it can have other applications and
also run locally.

gztool

A key component of the gzip partitioner is an existing software called gztool. Gztool is a GZIP files
indexer, compressor, and data retriever, which creates small indexes for gzipped files and uses them
for quick and random-positioned data extraction with no penalty. By default, Gzip-compressed files
have not been designed to be accessed in a random way: to know the value of a byte at a given
position x, it is necessary to decompress the file from the beginning to byte x. However the author of
zlib, Mark Adler, developed ‘zran.c’, a cryptic file that creates an index of “windows” filled with 32
kiB of uncompressed data at different positions along the compressed file. The index can be used to
initialize the zlib library and make it behave as if the compressed file begins there, thus allowing file
chunks to be extracted and decompressed.

Page 37 of 98

H2020 825184 RIA
20/07/2022 CloudButton

System design and processing steps

The partitioner operates in two steps, the latter involving either full or targeted partitioning and
decompressing:

Step 1: Pre-processing. To decompress chunks of a compressed Gzip file, the entire compressed file
must be decompressed beforehand, so as to generate the required index and associated data
file for any given FASTQ file.

Step 2a: Full partitioning. This partitioning strategy is based on the division of the Gzip-compressed
file into parts with an equal number of lines (except for the last one if the division is uneven),
leading us to obtain all the chunks that make up the original un-zipped file. FASTQ chunks
stored in S3 can be accessed by serverless functions directly.

Step 2b: Targeted partitioning. This partitioning strategy is based on decompressing a specific chunk,
and can be implemented from within a map function to process a specific file range. This ap-
proach removes the need for storing FASTQ chunks in S3, as the original files can be processed
on the fly. Thus, it also avoids the extra costs of communication to and download of files from
S3.

7.3.2 FASTQ partitioner using SRAtools

The Sequence Read Archive (SRA) at NCBI is the main public repository of sequencing data. The
latter is stored in AWS S3 buckets in a proprietory custom format and then converted to FASTQ
during the download process. NCBI provides a toolkit called sra-tools that allows to download
partitioned data from the cloud. The specific tool, fastq-dump, was deployed in parallel using AWS
Lambda functions, to generate partitioned data accessible via S3 Buckets for downstream steps. The
full workflow is as follows:

1. User provides an SRA sequence identifier

2. Sequence metadata is accessed from SRA, to establish the number of reads it contains without
having to download the file.

3. The srasplit.sh script generates a list of chunks (byte ranges) of user-defined size

4. The list of byte ranges, included in the map function iterdata, is packaged for distribution to
worker functions, orchestrated by the Lithops map function.

5. Each worker executes fastq-dump on an iterdata list item to download reads for a given byte
range, and stores the FASTQ chunk in the worker’s tmp folder.

This workflow was designed as described for three main reasons:

1. The fastq-dump implementation chosen accesses data via S3 Buckets containing sequences, not
an external database, which makes the data transfer very fast.

2. fastq-dump allows part-file downloads, passing a range as shown, thus reducing per-worker
bandwidth

3. Moving data between S3 and the worker micro-vm (or Lambda micro-vm) /tmp directory in-
curs no additional cost

Page 38 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 23: Schematics of the SRA partitioner.

7.3.3 FASTA partitioner

A distributed indexing and partitioning component for FASTA files was designed, to split large
genome reference files (FASTA) into a user-defined number of chunks, each to be processed in paral-
lel as part of the variant calling pipeline.

Splitting a FASTA file is not trivial, as the file contains multiple sequence headers (starting with >)
and these are not evenly spaced, as chromosomes differ in length. Depending on the desidered chunk
length, any given chromosome might be split into one or more subsequences, which in turn requires
the addition of headers for each subsequence. For instance, chr1, split in two, would generate two
headers, >1_1 and >1_1. As per the example given, names are also simplified by enumerating them
and the full chromosome name equivalent is stored in a table, for parsing at the end of the pipeline.
This helps reduce the size of intermediate .mpileup files.

The partitioner workflow includes the following steps:

1. Generate a FASTA file index, containing the byte ranges of every header and every sequence
(parall.)

2. Generate simplified headers for each sequence

3. Generate byte-range chunks, and split headers as required

4. Retrieve the appropriate byte ranges for each FASTA chunk, add the correct headers and save
all FASTA chunks to S3.

Interestingly, the output of the first indexing stage is the same as the indexing produced by the
samtools faidx tool, and therefore it was possible to compare the performance of these two indexing
methods. The former adopts a parallelised workflow using serverless functions, whereby the index
is the merged output of the parallel indexing of FASTA file chunks.

Page 39 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Name Size Distributed version samtools faidx

Hg19 3 GB 13.00 s 26.9 s
Tb927_01_v5.1 25.7 MB 9.4 s 0.29 s

For smaller files, indexing is done better locally since there is no overhead caused by Lithops
(mostly worker invocation and cold start), but for bigger files the advantages are obvious, with a 2.0x
speed up. This advantage could be increased by using a smaller obj_chunk_size.

7.4 Integration of Variant calling pipeline with Lithops

Variant calling is a key step in most genomics pipelines, and most commonly it involves alignment
of sequencing reads to a reference genome. Alignment mismatches are filtered and form the basis
for establishing any mutations (variants) in the sample(s) analysed. Reference genomes are stored as
FASTA files, each file containing several entries corresponding to a chromosome / sequence assem-
bly. Sequencing reads are stored as FASTQ files, and contain both sequence data (like FASTA files),
but also per nucleotide sequence quality information (hence the name FASTQ). In the genomics use
case example we follow an established variant calling protocol, combining the gem3-mapper [79]
for sequence alignment and SiNPle [74] for variant (SNP) calling. The purpose of this example is to
demonstrate portability and scalability of this core genomics pipeline using the serverless architec-
ture provided by Lithops. Lithops provides an extensible backend architecture (compute and stor-
age) that is designed to work with different Cloud providers (such as IBM Cloud, AWS, Azure) and
on-premise backends, allowing to run unmodified python code. Implementation of the genomics
use case is centred upon Lithops Map() and call_async() functions, which are stateless Serverless
Functions ran in micro Virtual Machines using AWS Lambda.

7.4.1 Pipeline overview

The variant caller pipeline uses Lithops as the orchestrator (using AWS as cloud provider) to imple-
ment a map-reduce framework, whereby FASTA and FASTQ files are split and all FASTA x FASTQ
chunk combinations are aligned using the gem-mapper. Before alignment takes place, the FASTA file
chunk needs to be indexed with the gem-indexer, which generates an indexed .gem genome file. The
indexed FASTA chunk is used as the reference for alignment of a given FASTQ chunk, generating an
alignment file, in .map format, which is then converted to the .mpileup format. While in the .map
format each line stores alignment results for each read, the .mpileup format collects information from
every read to provide a snapshot of the cumulative alignment results for each chromosome position,
providing the number of reads supporting each base call detected across all overlapping alignments.
The mpileup file is then converted to csv, and the file is stored in AWS S3. The reduce phase takes all
.csv outputs from the map phase, calculates their total size and then proceeds to allocating the ap-
propriate number of functions to process the data. Data processing involves merging mpileup data
across sets of functions that share the same FASTA chunk as reference, i.e. those files that share the
same chromosome positions. The merged mpileups are used as input for SiNPle, a Bayesian variant
caller that calculates the posterior probability that every base called is true. The partial .sinple output
from each reduce function is then uploaded to S3 and concatenated to produce the final output file.
This can be used for any subsequent nucleotide mutation analysis workflow.

Figure 24 provides a schematic representation of the pipeline, followed by a more detailed de-
scription of each step in section 7.4.2. Porting of this pipeline to the cloud poses several challenges,
which include the retrieval and accurate partitioning of FASTA and FASTQ files (as discussed in
section 7.3, managing the size of the .gem index file, handling suboptimal alignments arising from
mapping of any given read to multiple genome chunks (see also dedicated section 7.4.3, and the or-
chestration of multiple parallel reducer (discussed in more detail in section 7.4.4, to cope with the
large datasets being processed.

7.4.2 Variant Calling pipeline: key steps

Below is a list of the key steps in the variant calling pipeline, which can be grouped into three stages,
namely pre-processing (steps 1 and 2), map phase (steps 3-6) and reduce phase (steps 7 and 8).

Page 40 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 24: Variant Caller pipeline diagram

1. FASTQ file partitioning. Two versions of the FASTQ partitioner were designed, one that allows
partitioning of "in-house" FASTQ files, gz-compressed and stored in a private S3 bucket, as
discussed in section 7.3.1. The second allows partitioning of FASTQ files stored in the SRA
database, and these are retrieved by the SRA toolkit, as discussed in section 7.3.2. Both tools
calculate the correct byte ranges that allow partitioning of the input file based on the desired
level of parallelisation (each byte range is sent to a separate map function that then retrieves the
associated data). The smallest unit in a FASTQ file is a block of four lines (read name, sequence,
spacer line and sequencing quality information), so, provided the frame is correct in the input
file, partitioning the file is relatively straightforward.

2. FASTA file partitioning. The FASTA file partitioning process is more involved, as it requires re-
placement of original chromosome names with short identifiers, and, if necessary, the splitting
of the same chromosome across different FASTA chunks, which in turn requires the genera-
tion of additional headers with simplified naming (i.e. >chr1 becomes >1, but, if split into
two, would generate two headers, 1_1 and 1_2). Furthermore, an overlap needs to be kept be-
tween split chromosomes, in order for reads matching over the split not to be lost. The initial
implementation required the FASTA reference to be downloaded and split locally, but an im-
proved cloud-native version was designed that generates a FASTA file index, passing the index
to lambda functions for parallel retrieval and storage of the desired-size FASTA chunks. This
method was described more in detail in section 7.3.3. FASTA chunks are stored in S3 and then
retrieved by the relevant map functions during the map-reduce phase.

3. FASTA file indexing. FASTA file indexing using the gem-indexer is required by the gem-mapper
in order to optimise alignement performance, but it poses constraints on the size of FASTA file
that can be processed by any given function: a 3Gb FASTA file currently requires a 13Gb index,
which precludes the possibililty of eliminating the FASTA partitioning stage and partitioning
only FASTQ files, given that the maximum storage capacity for lambda functions in AWS is
currently 10Gb, and the maximum memory available to a function is 10Gb. With that said,

Page 41 of 98

H2020 825184 RIA
20/07/2022 CloudButton

pre-indexing the FASTA file and allowing each map function to retrieve the gem file directly
from S3 saves computation time and also allows larger genome reference chunks to be pro-
cessed. Removing the indexing stage from the map function and importing the gme file has
been a recent development (discussed in section 7.4.5, and it is hoped that it will help lower the
number of FASTA chunks genereated in the first instance (down to 4-6 chunks from 18-20).

4. Alignment of FASTQ file to FASTA file. Sequence alignment is the key step that is parallelised in
this variant caller cloud implementation, allowing wall-clock time to be brought down signif-
icantly (see 7.4.5). This step was optimised by abridging the gem3-mapper output, achieved
by filtering all data reported back on reads with no matches and by adding some filtering to
remove unlikely alignments. This additional filtration step significantly reduced the size of the
intermediate .map file, and allowed simultaneous creation of an "alignment index", reporting
the "score" of the best alignment for each read that passed the filter.

5. Alignment index correction. Whereas the pipeline as a whole embraces a serverless paradigm
by employing functions to process sequencing data in parallel, splitting the FASTA reference
into separate chunks (a necessity with the current workflow constraints, as indicated above)
requires communication between functions in order to establish, for each read, the best align-
ment(s) across all FASTA chunks. Unlike the more widely adopted .sam alignment format, the
.map format allows parsing of alignment "scores" for every reported alignment, thus making
these easy to compare across FASTA chunks. In order for this comparison to take place, a state-
ful solution was put in place, namely a Redis database (https://redis.io) hosted on an EC2
instance, tasked with receiving indices from all functions, processing them for each FASTQ set
(a set of functions sharing the same FASTQ chunk, and with different FASTA chunks), and re-
turning the relevant corrected index to each function (with the highest scores for each read).
The Redis index correction implementation is discussed in section 7.4.3. Index correction is
complete when the previously filtered map file is filtered again to remove suboptimal align-
ments, i.e. any alignments with a score that is lower than the highest score obtained across all
alignments associated with a given read.

6. Generation of mpileup files. Samtools provides a tool (mpileup) to convert .sam alignment files
to .mpileup files, but such tool did not exist for .map files, so it was written specifically for
the pipeline (and named gem-mpileup), once it became apparent that .sam files could not be
used for index correction. mpileup metadata is returned by each lambda function and used
to orchestrate the reduce stage, because the actual set of mpileup files is too big to be handled
directly by any reducer; every partial mpileup file (mpileup chunk) generated is saved to S3
after conversion to csv.

7. Merging of partial mpileup files. The standard Lithops map-reduce framework is based on a sin-
gle reducer function processing the output of every map function, which in this case would
involve merging the base calling results for each genome position across all mpileups. This
approach did not scale to the data sizes that needed to be processed by the use case. Next, a
reducer was allocated to every FASTA set, thus processing every partial mpileup file belonging
to a given FASTA set (i.e. all mpileup files that share the same partial reference sequence). This
approach worked on small datasets, but, in consideration of the potentially very high number
(hundreds) of FASTQ file chunks belonging to a FASTA set, reducers were allocated to FASTA
subsets based on chromosome position ranges. In order to determine the appropriate ranges,
file sizes were taken into consideration and then the appropriate split was determined, to avoid
overloading functions with more data than they could process. Conversion from mpileup to csv
(and then back to mpileup) allowed the data to be scanned using the AWS S3 select tool, to es-
tablish the appropriate ranges. This new multiple reduce implementation is discussed further
in section 7.4.4.

Page 42 of 98

https://redis.io

H2020 825184 RIA
20/07/2022 CloudButton

8. Variant calling. The merging of partial mpileups, as discussed above, is the prerequisite for SiN-
Ple to call nucleotide variants comprehensively for each genome position. Given that the algo-
rithm used treats each base position independently, it was possible to allow mpileup merging
and variant calling to be coupled processes running in each separate reducer. The final variant
calling results are then "collated" from the output of every single reducer, firstly to reconstruct
each FASTA set, and then the overall single file. This orchestration was achieved by using the
AWS multipart upload tool.

7.4.3 Cross-function communication with Redis

The different processes or execution threads within a Lithops’ Map_reduce() framework are executed
in Serverless Functions or Virtual Machines. These Functions are stateless and thus not designed to
communicate with each other. However, the Lithops framework allows each function to access the
same storage backend simultaneously. In addition, cloud providers do not charge or have reduced
costs for communication within the same area or datacenter. Therefore, we can orchestrate a commu-
nication system between the processes of the Map_Reduce() framework based on messages passed
through the storage backend. If what is of interest is the storage of large files at low cost, one should
use object storage services such as AWS S3, while, on the other hand, if the aim is to rapidly transfer
smaller files, one can use databases such as Redis or Infinispan.

For this variant caller pipeline, the implementation choice fell on use of a virtual machine hosting
a Redis server, acting as a storage backend for different Lithops clients, and processing the data
gathered in its database. Redis (Remote Dictionary Server) is an in-memory data structure store, used
as a distributed, in-memory, key-value database, cache and message broker, with optional durability.
Redis popularized the idea of a system that can be considered at the same time a store and a cache,
using a design where data is always modified and read from the main computer memory, but also
stored on disk in a format that is unsuitable for random access of data, but only to reconstruct the
data back in memory once the system restarts.

A library of functions was developed to automate the actions and control of the virtual machine
and Redis database from a python client. The virtual machine that stores the Redis database and pro-
cesses the intermediate files can be the same one that runs the Lithops client, so that communication
costs are reduced.

7.4.4 Parallel reducer

MapReduce is a programming model for processing large inputs in parallel taking advantage of
distributed systems. It consists of two phases:

1. In the map phase multiple map functions are called to process some key/value pairs and gen-
erate a new set of intermediate key/value pairs. Each mapper is assigned a partition of the total
input data.

2. In the reduce phase a reduce function is called to merge, aggregate or transform all the inter-
mediate values sharing same key. Each reducer takes its corresponding key/values from each
mapper’s output

There is an implicit phase between the map and reduce phase. This phase is known as Shuffle Phase
and consists of the transfer of the mappers’ intermediate output to the reducers. This phase helps
reducers to easily distinguish when a new reduce function should start, as reducers can be triggered
as map outputs are ready.

Lithops integrates a vanilla MapReduce function within its API. The problem with this function
is that is not suited to processing large volumes of data, as it calls M mappers but a single reducer.
This results in very poor performance that makes the scaling of architectures difficult. We therefore
used Lithop’s serverless function invocation APIs to create custom adaptations of the MapReduce
model. The first multiple reduce prototype was developed in the IBM Cloud, and although it allowed
mpileup files to be allocated to different reducers, it still did not allow scaling, given that merging

Page 43 of 98

H2020 825184 RIA
20/07/2022 CloudButton

full mpileup chunks with others within a FASTA set (i.e. a set of mpileup chunks sharing the same
reference FASTA chunk) eventually would lead to the creation of files that were too big to be handled
by the reducers. So the next implementation (in AWS) was based on decoupling the allocation of
mpileup chunks to reducers at the end of the map cycle: the mpileup file was now saved to S3 while
the reduce phase received keys with metadata to orchestrate the retrieval of mpileup files or parts
thereof within each reducer

With regard to efficient provisioning of reducers, at this point we should mention a further com-
plication: not all mpileup chunks within a set will necessarily have reads at all genome positions
included in that set, as the distribution of mapping reads will change from an mpileup file to the
next. This implies that selecting a fixed range of positions to take horizontal slices of each mpileup
chunk in a set could result in some reducers working under capacity because of the low number
of positions to be merged for that subset. A first solution identified involved creating a dictionary
storing all subset positions accompanied by the number of incidences of that position across mpileup
chunks in a set. While this allowed for very accurate data-driven partitioning, it did create a bot-
tleneck and posed a further scalability issue, given that dictionary capacity would limit the amount
of data that any reducer could process. The current implementation relies on a first reduce stage
that queries the number of lines within each range (the latter established based on an assumed even
split of each mpileup file), followed by a filter that captures any intervals with very low numbers of
positions to merge them with the previous/subsequent range, in order not to generate "near-empty"
reducers. The advantage of this implementation is that it is also compatible with the multipart up-
load service offered by AWS, where partial files can be concatenated based on a list of keys provided,
but this concatenation process is successful only if the partial files to be merged are larger than 5Mb.

The selection of specific positions or ranges in a file stored in s3 is made easier by a specific tool
developed by AWS, called S3 Select. S3 Select is a AWS service that enables applications to get data
subsets from a structured object on S3 by using SQL queries. Queries are run in the server side, releas-
ing the user from SQL implementations, and are billed based on the amount of data processed. This
service has some limitations, for example, the format of the file in which the queries are performed
(needs to be .csv or .parquet) and the type of queries, which only allow filter operations.

Thus, the reduce stage was separated into two, one to query each mpileup file (after conversion
to csv or parquet format) using S3 Select to establish the ranges that needed to be applied to each
fasta set, and then a second reduce phase that allocated range subsets to different reducers, which
then marged the mpileup subsets and generated .sinple outputs. The latter were first merged across
subsets using AWS multipart upload to generate .sinple files corresponding to each fasta set, and
then a further round of multipart upload was initiated to merge all sets into the final output file.
A simplified diagram illustrating the overall architecture of this multiple reducer is given below in
Figure 25.

7.4.5 Results

Integration and testing of pipeline components and their relationship with overall performance is
still in progress, both in terms of optimisation of code for efficient use of individual lambda function
capacity, and in terms of scaling requirements. Scaling has constituted the biggest challenge, espe-
cially in terms of ensuring reliable intermediate file orchestration between functions through Redis
when the number of functions is large (>3000), and in terms of optimising the multiple reducer de-
sign to cope with large map function outputs. FASTA and FASTQ partitioners, on the other hand,
have proven to scale well.

Here we present some promising preliminary benchmarking results, testing pipeline performance
for a 101 Gb FASTQ file with 339M sequencing reads (SRA accession number: ERR9856489). Two
similar data partitioning strategies were tested (hereafter referred to as run A and run B), with the
human genome FASTA reference (∼3 Gb) split in 18 chunks in both cases, and the FASTQ file divided
respectively into 260 chunks (∼385 Mb) and 225 chunks (∼444Mb). Given that every FASTA chunk
needs to be aligned with every FASTQ chunk, this means that run A called 4680 map functions, while
run B called 4050 map functions. Run settings were similar, but lambda runtime memory in run B

Page 44 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 25: Multiple reducer architecture diagram

was increased from 4096 Mb to 5120 Mb.

Wallclock time

A first highlight of these results is the processing speed that can be achieved by using serverless func-
tions, obtaining a high degree of parallelisation: the entire variant calling workflow was completed
in ∼7 minutes (408 s) in the case of run A, and just over 3 minutes (188 s) in the case of run B. The
additional memory allocated in run B dramatically lowered processing time, with a further gain con-
stituted by the reduction in the number of functions. The wallclock time comparison (and associated
AWS costs) between these two runs is illustrated in Figure 27 below.

Figure 26: Timeline of a typical execution of this workflow.

Key performance indicators

As already discussed, it should be noted that the FASTQ dataset needs to be "replicated" as many
times as the number of FASTA chunks, therefore, in terms of absolute data volume, in both runs we
are processing 1.818 Tb of data. Measuring throughput for both run A and run B, we have achieved
between 0.20 and 0.38 Gb/s throughput if we use the input file as measure, and 3.7 to 6.8 Gb/s in

Page 45 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 27: Wallclock time comparison of two variant caller runs (A and B) for FASTQ ERR9856489

terms of absolute data volume processed.

Scalability, elasticity

In terms of workflow scalability, in light of the absolute amount of data processed by the pipeline,
due to parallelisation constraints, it must be stressed that additional improvements to minimise the
number of FASTA partitions would ensure both less data processing redundancy and a lower number
of functions used. This in turn would provide more scalability, i.e. the ability to process larger FASTQ
files, by using a larger (but still feasible) number of concurrent functions, a cap on which is set by
AWS at 10000 at the moment.

Cost effectiveness

For convenience, a lambda and S3 price calculator (PriceEstimator.py) has been included in the
pipeline, reporting on the key costs associated with this workflow. It indicated that run A cost $25.5
whereas run B cost $26.5 (see Figure 27). These are comparable prices, suggesting in this case that
faster execution can be achieved without any significant extra costs, as the gain in speed cuts down
on execution time and therefore on Gb/s costs, and thus the faster run (run B) ends up costing the
same as the slower execution (run A). The price of both runs was around 25 cents / Gb input file,
which is quite high, but it can most likely be brought down with further pipeline optimisation. For
example, a previous run with the same input files and partitioning strategy had double the cost, but
this was successfully halved by removing the fasta indexing stage from the map function, given that
fasta indices can be considered "fixed" and treated as inputs, rather than calculated on the fly for each
run.

Productivity

While cost might pose barriers to adoption of this workflow until further optimisation and validation
is completed, it should be noted that, in terms of wallclock time, this serverless variant caller outper-
forms the Dragen commercial services offered by Illumina, the leading sequencing company, which
guarantees variant calling of a ∼120 Gb FASTQ file in 36 minutes (see and is considered the fastest
variant caller available. By comparison, run A and run B completed processing 101 Gb in 3-7 minutes,
which equates to 5-10 fold speedup. On a related note, one price estimate for using Dragen to pro-
cess ∼120 Gb FASTQ was around $18 (https://www.lifebit.ai/blog/how-to-use-illuminas-dragen-

Page 46 of 98

https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html

H2020 825184 RIA
20/07/2022 CloudButton

in-cloudos-ultra-rapid-highly-accurate-secondary-ngs-analysis-at-your-fingertips/), which equates to
$0.15/Gb. Although our data is very preliminary and the pipeline still needs to be further developed,
it could still be argued at this stage that the (less than) two-fold increase in cost for our pipeline com-
pared to Dragen is offset fully by the more than 5-fold increase in speed.

7.4.6 Code, documentation and datasets

The code for the pipeline, and associated documentation, can be found at the following repository:
https://gitlab1.bioss.ac.uk/lmarcello/serverless_genomics/-/tree/main/variant_caller. The
main repository for sequencing data (FASTQ files) is the the Sequence Read Archive (SRA - https:
//www.ncbi.nlm.nih.gov/sra/docs/) and data can be accessed and downloaded by accession num-
ber. The data is stored in a proprietory compressed file format, and uncompressed to FASTQ format
while downloading. Final FASTQ sizes are typically around 30-100Gb but can be as big as a few
Tb. Various genome reference sources can be used, and are stored either at ncbi or in specific repos-
itories associated with specific genome sequencing projects, depending on the organism. For our
tests, we used the hg19 human genome reference sequence (∼3Gb), which can be downloaded from
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/.

7.5 Transparent conversion of legacy code

The aim of this work is to study the transparent migration to the cloud of existing parallel compo-
nents written in OCaml that have been extensively used to develop genomics data analysis pipelines.
As a test use case, we will focus on the alignment collection stage mentioned in EXAMPLE 1 – the
one that proved difficult to port to the cloud using WebAssembly and FAASM due to their lack of
support for polyglot programming.

By transparent we mean that we would like to be able to compile and run in the (serverless)
cloud our original code with as little modifications as possible, with all the complexity of distributed
programming hidden from us, and with resource management and cost optimisation automatically
performed for us. As a technology to fully do so does not currently exist, we focused on creating a
programming environment that could be linked with the extant OCaml code with minimal modifi-
cations and provide sufficient performance.

7.5.1 Architectural breakdown and proposed changes

The original, single-machine multiprocessing model is illustrated in Figure 28. Having no need for
network stack, it uses Unix fork to spawn processes and Unix pipes to communicate different pro-
cessing stages.

The OCaml API for the framework is the following:

1 let process_stream_chunkwise ?(buffered_chunks_per_thread = 10)
2 (f : unit -> 'a) (g : 'a -> 'b) (h : 'b -> unit) threads

Listing 1: OCaml framework original main function declaration.

There are three main distinct prototype functions that must be implemented for each use-case:

1. The chunking function f reads the input and verifies its integrity before distributing the chunks
to the worker functions. It is directly connected to all the workers.

2. The map/worker function g is directly connected to the chunking function to retrieve work
and also directly connected to the reducer, in order to send the processed data. Multiple invo-
cations of this function are done in parallel, using different processes and retrieving different
workloads from the same chunker. Two workers will never process the same chunk even when
running concurrently.

3. The reduce function h gathers workers processed chunks, preserving order and optionally sav-
ing state to generate final outputs.

Page 47 of 98

https://gitlab1.bioss.ac.uk/lmarcello/serverless_genomics/-/tree/main/variant_caller
https://www.ncbi.nlm.nih.gov/sra/docs/
https://www.ncbi.nlm.nih.gov/sra/docs/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/

H2020 825184 RIA
20/07/2022 CloudButton

Local execution (each node is a different process)

Mapper

Worker

Worker Reducer

Worker

Figure 28: Original local execution architecture

The framework uses a custom stop-and-wait flow control based on OS pipes. Each process sends
control bytes to start and stop reading the pipes at their ends, avoiding blocking the process when
they are halted by the OS if the pipe memory buffer is full when multiple data blocks are sent. Also,
the chunk size can be controlled by a parameter that is given to the chunker, so the pipe is never
blocked by a single big chunk.

Main characteristics of the original framework are:

(1) There is no integrated shared memory mechanism.

(2) Forking processes allows leveraging virtual memory and Copy-On-Write kernel mechanisms to
share variables from the parent process.

(3) Message passing arbitrary structured data between processes is possible thanks to serialization.

(4) There is always a single chunking instance and a single reducer instance, but an indefinite num-
ber of workers. The number of workers must be explicitly provided to the framework by the
implementation code.

Point (3) has special significance for flexibility. OCaml being able to serialize most of its structured
and primitive types, the sample program is able to send a tuple of a line counter and an arbitrary
buffer type through pipes.

7.5.2 Adapting the OCaml framework with a Lithops Python wrapper

As Lithops is especially suited for highly parallel programs with little or no need for communication
between processes, this use case is adequate due to only requiring communication between differ-
ent phases of the execution (map and reduce, for which cloud storage can be used) and not direct
communication among nodes.

Moving to the cloud should be as transparent as possible, with minimal code changes so that
less code paths have to be tested again and the working logic is intact. In addition, function im-
plementations have to be mostly treated as black-box logic because they should still work after the
cloudification process. We will then assume that the basic building blocks of the frameworks (func-
tions f, g, and h) are left intact and presented to Lithops as pre-compiled binaries. Lithops will then
act as a high-level wrapper to provide localisation in the cloud and inter-process communication.

Page 48 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Inter-Process Communication

To provide communication between blocks, we use the asyncio Python framework. By leveraging
it we are able to read and write to and from pipes using a single thread asynchronously from the
python wrapper without complex protocols, without being bothered about thread overheads or the
Global Interpreter Lock when reading pipes. Most work is I/O so CPU load is well distributed,
reading and writing to pipes is a good use case for an event loop. In addition, other concurrent steps
such as the multipart upload (see section Reducer) can be integrated into the same.

Chunker

We assume that the previous step in the pipeline saves the input file in cloud storage, be it a sequencer
that uploads the sequenced data directly to the cloud or a preprocessing step.

The chunker may be adequate when processing local data because it is mostly I/O bound as
it is always reading, up to the limits of the hard disk speed, there is no need to parallelize it. In
contrast, it is inconvenient to chunk sequentially when processing data in the cloud. That is because
the cloud is prepared for much higher aggregate bandwidth and parallelization levels, being able to
read different sections of the files in cloud storage at the same time. It is also fundamental to partition
based on cloud storage and not to use a local chunker outside the cloud network as that could create
a bottleneck based on the client available bandwidth and packet loss while uploading the chunks to
the workers.

In order to remove such a bottleneck, we base our revised, cloud-ready chunker on a byte-range
partitioner, with the ability to read in parallel from the cloud storage different chunks. That is not
entirely straightforward due to the presence of structured records in the input file. We correct that
with a step based on regular expressions that locates the end of the first record overlapping the
boundaries between any two blocks. Two example regular expressions are provided for two different
formats: FASTQ [80] and MAP single end reads [73].

The algorithm works as follows:

1. We generate a set of evenly sized byte ranges so that the file is entirely split by them. The last
byte range might have a shorter size than the others.

2. We append a predefined number of bytes at the end of each range (bytes that overlap with the
start of the next range). That is not needed for the last range.

3. We invoke a function call for each byte range.

After the partitioner invokes the function call, the following happens:

1. The Lithops wrapper map implementation code reads the byte range entirely to memory and
pipes it into the standard input of the OCaml binary.

2. The OCaml code seeks the first match of the provided regular expression for that format. When
the first match is found that position is saved as the start of the real chunk, discarding anything
before it.

3. The OCaml code seeks the first match of the same regular expression but this time at the end of
the chunk, just before the extra window at the end. The matched position is the end of the real
chunk, it may be inside the extra window at the end.

4. Now the chunk is already healed, entirely in memory and the local chunker may distribute the
work among the worker processes.

To avoid having Lithops as a dependency when developing locally, a OCaml partitioning scheme
that mimics the Lithops partitioner with local files was also developed (byte range generation) and
added to the framework toolset. It does not require any Python interpreter to run.

Page 49 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Worker / Map

As the original framework does not make any hard assumption on the nature of the workers, one
might be tempted to think that a good solution can be achieved by just replacing Unix pipes with
cloud storage. Unfortunately, that is not the case. In fact, preserving the local multiprocessing code is
important to reap the benefits of vCPU scaling, which solely depends on the memory runtime chosen
for the cloud function call – the higher vCPU tiers provide three, four, five and up to six CPU cores,
see Table 2. And, if running inside a virtual machine instead of cloud functions, local multiprocessing
is also useful.

Memory vCPUs CPU Ceiling Memory vCPUs CPU Ceiling
832 MB 2 0.50 5308 MB 4 2.67
1769 MB 2 1.00 7076 MB 4 2.84
3008 MB 2 1.67 7077 MB 5 3.86
3009 MB 3 1.70 8845 MB 5 4.23
5307 MB 3 2.39 8846 MB 6 4.48

10240 MB 6 4.72

Table 2: Experimental analysis of AWS lambda vCPU scaling [81].

That is why we modified the local chunker in the OCaml binary to ingest the whole chunk at once
and distribute the chunk to the local worker processes. This way, Unix pipes are still used in the local
execution inside the function to scale on vCPU usage and avoid being billed for idle compute. If a
particular use-case required a single process/worker, with the proposed architecture, the same code
would still properly operate with no modifications needed.

Lambda execution WORKER role bypass (each node is a different process)

stdoutMapper

Worker

Worker Gather / reduce

Worker

stdin

Figure 29: Worker using Lithops wrapper

On the new architecture, while executing the worker role, the local reducer collects the outputs of
the local multiprocess workers as if it was to reduce them, but instead, it redirects the serialized data
to standard output. Meanwhile, the Lithops wrapper consumes from this standard output pipe and
uploads data in chunks to the cloud storage bucket.

Reducer

The reducer is the biggest bottleneck in the whole architecture. By design, it is not parallelized,
launching only a single process for each program execution. This seriously impairs scalability on
modern architectures, but is necessary due to genericity constraints – implementing a distributed
reducer architecture might impair the capacity for the reducer to be used with generic legacy code.

In our specific use case, it is still possible to speed up the final reduction process by performing a
binary reduction of the chunks.

Page 50 of 98

H2020 825184 RIA
20/07/2022 CloudButton

A multipart upload allows aggregating a single object as a set of parts. Each part is a continuous
portion of the object’s data and can be uploaded independently or without preserving the original
order. This feature has a lot of benefits, but we are only interested in a few of them, such as the ability
to begin uploading an object without knowing the final size. What is particularly interesting to us
in this case is the capability to stream parts sequetially. Saving each mapper’s output to different
files, aggregating these paths to a list, providing the reducer with the list and the reducer fetching
each file individually in order, is the best option for simplicity. No coordinator is needed for this and
functions still benefit from streaming (although to separate files) in the framework’s architecture.

The library used for this task is called aiobotocore which exposes an async API for the botocore AWS
library. In this case, no extra configuration is required other than installing the dependency using the
pip package manager. A simple modification is done to the code so that Lithops hands the credentials
used to the aiobotocore client and no extra authentication must be set up.

Lambda / batch REDUCER execution role bypass (single node)

stdoutReducestdin

Figure 30: Reducer using Lithops wrapper

Now the Lithops wrapper gathers all the chunks saved by the workers from cloud storage, pre-
serving order and piping them into the standard input of the OCaml binary one after the other.

The output from the reducer is uploaded to a single file. However, the OCaml reducer binary is
still free to use any available cloud storage libraries to directly write an arbitrary number of additional
files to cloud storage itself.

Program execution flow

Instead of the chunker directly reading from files using OCaml standard library, it should receive its
input via standard input as a string and distribute it to its child processes.

The redirection of the local reducer input to standard output when running in a map function
comes at a cost: a code refactoring/constraint. The wrapped binaries must decide when to take the
reducer code path that redirects the input to standard output and when to reduce the input directly
(do the task of the actual reducer implementation).

A cheap and quick way to differentiate when to execute a worker or reducer is by using environ-
ment variables, set by the Lithops map and reduce implementation functions to differentiate code
paths to run depending on where the same binary should take the role as a reducer or a worker. The
resulting switch can be transparently embedded into the modified OCaml API. Another advantage
to this solution is that environment variables can be queried from any binary independently of the
programming language used, providing language transparency in the mechanism that the wrapper
uses to communicate which code branch is to be run (worker or reducer).

Ocaml API changes

The proposed strategy results in a modified API that allows OCaml code to interact with the Lithops
wrapper environment:

Page 51 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Function scheduling

Lambda function call

Gather to
stdout

Local
mapper

Worker

Worker

Worker

Lambda function call

Gather to
stdout

Local
mapper

Worker

Worker

Worker

Lambda function call

Gather to
stdout

Local
mapper

Worker

Worker

Worker

Byte range partitioner

Stream result to bucket

Lambda / batch reducer execution

Sequential reducer

CloudObjects

1 intermediate/DJu2tp.tmp

2 intermediate/daTjRk.tmp

3 ...

Fetch chunk

Write serialized intermediate output

Figure 31: Cloud framework architecture

1 let process_stream_chunkwise_with_Lithops ?(chunk_size_in_mb = 32)
2 (filename : string option) (elem_detector : Str.regexp)
3 (chunker : string -> 'a) (worker : 'a -> 'b) (reducer : 'b -> unit)

Listing 2: OCaml framework adapted main function declaration.

7.5.3 Validation

The purpose of this section is to:

• Highlight streaming from memory to the cloud storage without configured temporary storage.

• Emphasize on the throughput gained from cloudifying the map phase.

• Demonstrate how the performance scales as the input file gets bigger.

The speedup is mostly expected on the Map phase as a result of the Map function completely run-
ning in parallel without communication between nodes (embarrassingly parallel), being the Reduce
phase equal or worse than in a single-machine setup (sequential). Leveraging serverless functions
for the map function, there is the benefit of aggregate bandwidth and scalability, whereas the reducer
can just use a virtual machine or a cloud function if the file is small enough.

Tests have been prepared to generate throughput and speedup plots for the map phase, using
variable volumes of 4 and 100 GB. The files are saved in S3 cloud storage and the Lithops coordinator
runs from a laptop using wireless outside the cloud internal network.

As baseline for testing single-machine performance we processed files through a c6id.2xlarge in-
stance. C6i instances are powered by 3rd Generation Intel Xeon Scalable Ice Lake processors. This
instance in particular has 8 vCPUs, 16 GB of memory, up to 12.5 Gbps of network bandwidth and a
474 GB NVMe SSD. The input files have been downloaded from S3 to the hard disk to speed up the
reading phase. However, the outputs are directly streamed to S3.

Figure 32 shows that the large file gets a limited speedup of ∼ 2× on the VM, even when many
processes are used (results are similar for the smaller test file). On the other hand, Figure 33 show-
cases how using serverless functions and their aggregate bandwidth can scale better for huge files
thanks to a parallel architecture.

Page 52 of 98

H2020 825184 RIA
20/07/2022 CloudButton

1 2 4 8
Number of processes

16

18

20

22

24

26

28

30

10
0

GB
 fi

le
 e

xe
cu

tio
n

tim
e

(m
in

ut
es

)

1 2 4 8
Number of processes

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

c6id.2xlarge instance

Figure 32: Virtual machine execution time and speedup, 100 GB file

12
8

25
6

51
2

10
24

Number of functions

5

10

15

20

25

30

35

10
0

GB
 fi

le
 e

xe
cu

tio
n

tim
e

(s
)

12
8

25
6

51
2

10
24

Number of functions

1

2

3

4

5

6

7

Sp
ee

du
p

Lithops (AWS Lambda 7078 MB 5 vCPUs)

Figure 33: Lambda execution time and speedup, 100 GB file

It is important to consider that the tested Lambda configurations are not the fastest available and
the concurrency quota might be increased to reduce wall-clock time even further on large files.

The total billed amount for the Lambda experiments (all configurations and plots) was approxi-
mately $5. Temporarily storing results in S3 cost less than 40 cents.

Key takeaways

Our work has led us to conclude that an inter-process communication wrapper is the simplest ap-
proach towards the cloudification of an existing multiprocessing parallel framework already used in
different genomic use-cases and written in OCaml. By treating each program like a black box instead
of tweaking its internals in a lengthy process, we have devised a satisfactory methodology to achieve
transparency and avoid the overhead of rewriting business logic. After the changes, the new archi-
tecture outperforms single-machine executions for huge files and the local-cloud performance gap
greatly improves the bigger the input files are.

Page 53 of 98

H2020 825184 RIA
20/07/2022 CloudButton

7.6 Conclusions

The genomics use case has demonstrated portability of a variant caller pipeline to the cloud, and
has spurred the development of tools and workflows at the interface between genomics and cloud
computing. Genomic processes such as genome indexing and mpileup file generation were adapted
to meet the requirements of a parallelised workflow, leading to the development of a serverless so-
lution with a stateful component to manage optimal sequence alignment selection across functions.
This, in parallel with dedicated data partitioning tools and carefully designed function orchestration
at the map / reduce interface, allowed scaling of the variant calling pipeline to >100Gb input files,
obtaining results in a very short wallclock time (3-7 minutes), which is way quicker than commer-
cially available alternatives and has a comparable cost. This performance level is already sufficient to
process commercial data routinely produced in the field; with further consolidation and refinement
of map and reduce function throughput, it is foreseeable that even larger input files can be processed
with similar run times, at a commercially competitive cost. This paves the way for elastic bioinfor-
matic workflows that are controlled from a laptop and allow anyone, including labs with limited
resources and not possessing specific expertise in the field, to assemble on-demand large amounts
of CPUs and resources in the cloud for the timely and cheap processing of their data — or for the
fast reanalysis of large datasets already available in the cloud. We also explored in some detail the
question of portability of legacy code, possibly written in unusual or polyglot languages, and how
bioinformatics workflows should be optimised to make them ready for cloud environments. In gen-
eral, the cloud requires bespoke solutions and can help drive genomics to the adoption of file formats
and algorithms allowing faster and more elastic querying and processing in a distributed environ-
ment. Successful development of reusable bioinformatics components, a variant calling pipeline and
a parallelisation engine based on Lithops and presented as a transparent OCaml API suggest that
other bioinformatic workflows could also be ported to the cloud, building on the tools developed in
this use case.

Page 54 of 98

H2020 825184 RIA
20/07/2022 CloudButton

8 Geospatial use case

Geospatial data [82] can be described as data that provides geolocated and temporally defined in-
formation about some aspect of the earth’s surface and its characteristics.

Geospatial data [82] is very diverse and is obtained from dispersed sources, defined in a vari-
ety of data type formats. Examples of geospatial data could be polygons delimiting land surfaces,
with added metadata such as census data by urbanization, or spatially dispersed points representing
weather stations producing weather data continuously over time, or satellite imagery represented as
arrays of thousands of cells describing the surface of the Earth.

In [82], they list the following kinds of geospatial data:

• Vectors and attributes: Descriptive information about a location such as points, lines and poly-
gons.

• Point clouds: A collection of co-located charted points that can be recontextured as 3D models.

• Raster and satellite imagery: High-resolution images of the Earth, taken from above.

• Census data: Released census data tied to specific geographic areas, for the study of community
trends.

• Cell phone data: Calls routed by satellite, based on GPS location coordinates.

• Drawn images: CAD images of buildings or other structures, delivering geographic informa-
tion as well as architectural data.

• Social media data: Social media posts that data scientists can study to identify emerging trends.

Geospatial analytics [82] is the process of analyzing geospatial data in order to extract useful
information to create data visualizations and to incorporate timing and location attributes to other
conventional sorts of data. These visualizations can highlight historical changes and present shifts
using maps, graphs, statistics, and cartograms. Visual patterns and pictures that are simple to recog-
nize give insights that otherwise could be missed in a large spreadsheet. This might lead to quicker,
simpler, and more accurate forecasts.

Geospatial data analytics present two main challenges:

1. First, geospatial data occupies an extremely large volume of space. For example, it is es-
timated that 100 TB of weather-related data is generated daily [82]. Data management and
efficient storage and access is still a big issue for this magnitude of volume.

2. Second, geospatial data is represented in many different data formats. Geospatial data an-
alytics requires complex pre-processing to prepare data in order to just present it efficiently
and in the appropriate format to the requesting analytics application. These processes are, for
example, data format transformation, filtering, partitioning, alignment. . .

These challenges have been studied in the context of Cloudbutton project with Serverless tech-
nologies in mind. Serverless technologies can facilitate the implementation of geospatial analysis
workflows in the Cloud and overcome technical limitations, like scaling, that other solutions (like
on-premise processing) cannot handle. In brief, we take benefit from the high scalability and flexi-
bility of serverless functions combined with the high bandwidth capacity of Object Storage parallel
read in order to reduce execution time and increase speedup by parallelizing the geospatial analy-
sis processes. Geospatial processes are trivially parallelizable: the more land surface to analyze, the
more independent parallel processes we can run in serverless functions. Nonetheless, one problem
we have faced in this use case is the preparation of the data. In order to provide the functions with
optimally partitioned data to effectively perform the parallel computation, the data must first be pre-
processed, transformed, partitioned and sanitized. Other data formats, like CSV tabular data, are

Page 55 of 98

H2020 825184 RIA
20/07/2022 CloudButton

trivial to partition (as data can be split by number of rows). However, geospatial data formats are
not prepared to be directly consumed partitioned in parallel from Object Storage: most of the data
formats expect a file system interface where the application can seek and read data chunks with low
penalty. Thus, geospatial data formats are a particular case in which pre-processing and partitioning
are decisive when looking for partitions of optimal size and obtaining a good performance in the
data analysis phase. In this use case we will place special emphasis on this preliminary phase of
the analysis, since the subsequent tasks are of no interest with regard to novel challenges of parallel
analysis using serverless functions.

8.1 Geospatial use case: a general overview

The geospatial use case consists of different individual workflows. However, many workflows have
data dependencies between them. Figure 34 represents the big picture of the whole use case, where
we have integrated the different geospatial use case workflows. We can see the different inputs and
outputs each workflow has, and the data dependencies between them. In the next sections, we will
describe each workflow separately, providing insight on how data management is handled utilizing
Cloud Object Storage and serverless functions.

LiDAR Cloud Point

LiDAR Partitioner
for Lithops

Even-Sized
LiDAR Cloud Point

Partitions

Lithops Serverless
Model Calculation

Digital Terrain
Model

Digital Elevation
Model

Canopy Height
Model

Aspect and Slope
Model

Lithops Serverless
Biomass Calculation

Lithops Serverless
Water Consumption

Calculation

Meteorological
Station

Data

Agrarian
Data

Lithops Serverless
NDVI Calculation

Lithops Serverful
Sentinel2 Satellite
Image Processing

Cloud-Optimized
Geotiff Rasters

Sentinel2 Satellite
Image

Water Consumption
Rasters

Biomass Density
Rasters

NDVI Rasters

Lithops Serverless
NDVI Diff Calculation

NDVI Diff
Rasters

Legend

Raw geospatial
data input

Geospatial
metadata

Intermediate
geospatial data

Geospatial process
result

Serverless geospatial
processing work�ow

Figure 34: Geospatial use case overview.

The purple rhomboidal boxes represent raw input data, obtained from open data portals such
as the Spanish National Center for Geographic Information (Centro Nacional de Información Ge-
ográfica, CNIG) or Copernicus Open Access Hub. The green rhomboidal boxes identify geospatial
metadata, generally point data stored in tabular formats such as CSV. Finally, the red rhomboid
boxes represent intermediate data between workflows, and the yellow rhomboid shapes represent
the workflow outputs – results that can be analyzed by experts in order to draw conclusions about
the problem at hand.

Blue boxes represent geospatial workflows utilizing serverless technologies such as Lithops. Here
we would like to remark that Lithops provides the ability to both preprocess data for transforming
and filtering and to process data to obtain conclusions. As mentioned before, it is crucial to prepro-
cess the data in order to provide parallel reading capability from many functions, so as to exploit
the parallelism of serverless functions. In this case, the preprocessing workflows are "Lithops Server-
ful Sentinel2 Satellite Image Processing" (Section 8.4), "LiDAR Partitioner for Lithops" (Section 8.2) and

Page 56 of 98

H2020 825184 RIA
20/07/2022 CloudButton

"Lithops Serverless Model Calculation" (Section 8.3). On the other hand, the data processing workflows
are "Lithops Serverless NDVI Calculation" (Section 8.5), "Lithops Serverless Water Consumption Calcula-
tion" (Section 8.6) and "Lithops Serverless Biomass Calculation" (Section 8.7).

For each workflow, we will briefly review what the geo-processes consists on, how data is man-
aged and partitioned, how it is scaled and parallelized using Lithops and serverless functions and
finally which is the impact of each workflow implementation in terms of key performance indicators.

8.2 Preprocessing Workflow: LiDAR Partitioner for Lithops

This section explains the development of a tool to partition LiDAR files. LIDAR data is the base
from which, through preprocessing methods, we can extract terrain models that are used in other
workflows (see Section 8.3). Therefore, the main motivation for partitioning LIDAR files is to increase
parallelism and speedup by using serverless functions and thus reducing the overall workflow run
time. We start by introducing the main characteristics of LiDAR files and their particularities. Next,
we explain the problem of partitioning this type of files. Finally, we detail how the tool has been
implemented and evaluate its efficiency.

8.2.1 LiDAR file format

LiDAR files represent a cloud of points, generally in a 3D space with (x, y, z) coordinates among other
metadata, for example RGB color of the point. Point clouds obtained with LiDAR (Light Detection
and Ranging) systems can be stored using different types of files. Among the most common we can
find: generic ASCII files, LAS files [83] or LAZ files (also named LASzip) [84]. In this work we focus
on the partitioning of binary LAS and LAZ formats, due to the inefficiency problems of the generic
text-based ASCII format, which are derived from the reading and interpretation of data and typical
large size of files even for small amounts of data. Figure 35 represents a 3D representation of an
example cloud point file.

Figure 35: Example cloud point of a mountainous region in the area of Muntanyes de Prades, Tarrag-
ona, Spain

LAS is a public file format developed to store LiDAR data in the form of point cloud data. This file
format was developed by the American Society for Photogrammetry and Remote Sensing (ASPRS)
in 2003 and constitutes one of the main open standard formats used for the storage and processing
of LiDAR data. Its intention is to provide an open format that allows different LIDAR hardware and
software tools to output data in a common format to facilitate the processing of this type of data. The
LAZ file format is a lossless compression of the LAS format.

LAS/LAZ file format consist of 4 differentiated sections:

• Public Header Block: It contains generic metadata such as point number, coordinate bounds or
point format.

• Variable Length Records (VLRs): It contains variable types of additional information such as
the spatial reference system or descriptions on extra dimensions of the points.

• Point Data Records: It contains the list of points with all its associated data, such as: intensity,
classification or some related flags. There exists 10 different types of point data format, each

Page 57 of 98

H2020 825184 RIA
20/07/2022 CloudButton

of them allow storing different fields associated to each point. All Point Data Records in a file
must be the of same type.

• Extended variable length records (EVLRs): This section was added in LAS specification version
1.3. The EVLR is, in spirit, identical to a VLR but can carry a larger payload as the “Record
Length After Header” field is 8 bytes instead of 2 bytes.

8.2.2 Coordinates-based naive partitioning

To facilitate the parallel processing of LAS/LAZ files, a previous preprocessing of the data is needed
in which the files are partitioned.

As detailed above, LAS/LAZ file format consist of different sections, which can basically be di-
vided into two types: metadata and point data. LiDAR file partitioning has to respect the structure
of the LAS/LAZ files in order to remain compatible with already existing LAS processing software.
To do this, all the metadata of the original file must be kept in each partitioned file and the Point Data
Records must be divided between each one, as it is shown in Figure 36.

Public Header Block

VLRs

Point Data Records

EVLRs

Point Data Records

Public Header Block

VLRs

EVLRs

Point Data Records

Public Header Block

VLRs

EVLRs

Point Data Records

Public Header Block

VLRs

EVLRs

Point Data Records

Public Header Block

VLRs

EVLRs

Figure 36: Scheme for LiDAR files partitioning.

A first approach for partitioning a LiDAR file is by chunking the xy-plane in equivalent dimen-
sions. For example, for a lidar file of 1000 square meters, one could partition it into 4 smaller files of
250 square meters each, the first with minimum coordinates (0, 0) and maximum (250, 250), second
with (0, 0) minimum and (250, 500) maximum, and so on.

This partitioning method is not optimal. This is mainly due to the fact that LiDAR files can be
unbalanced, i.e. the point density is not required to be the same along the entire xy plane of the point
cloud. This is due to different reasons. For example, it could be that the file has been formed by dif-
ferent point measurements with different tools or methods (e.g., combining light aircraft stripes with
lower altitude drones in specific areas). As a result, partitioning the file from static chunks of the xy
plane produces unbalanced partitions, which is not reliable nor optimal for serverless computation:
First, performance is affected due to unbalanced load among workers, and second, because some
partitions might exceed functions’ maximum memory.

8.2.3 Density-based advanced partitioning

In this section we present the ins-and-outs and the benefits of the LiDAR partitioner we have devel-
oped as part of the geospatial toolkit for serverless processing.

In brief, our partitioner has the following benefits over the coordinates-based partitioner de-
scribed above: (i) we delimit chunks based on point density instead of by hard coordinate bounds,

Page 58 of 98

H2020 825184 RIA
20/07/2022 CloudButton

(a) Original point cloud. (b) Result of SMRF on the entire
point cloud.

(c) Result of SMRF in on the Point-
View partitioned in 16 chunks with-
out buffer.

(d) Result of SMRF in on the point
cloud partitioned in 16 chunks with
buffer.

(e) Shape of the created tiles without
buffer.

(f) The distortions and protrusions
problem that arise without buffer.

Figure 37: Example of the problems that arise when the buffer is not used.

which produce even-sized chunks and (ii) we introduce a buffer to each chunk in order to reduce
partition boundary anomalies.

File granularity size is very important when using serverless functions for processing them: if
files are very large, serverless functions will exceed the available function’s memory limit; but if the
files are very small, computational efficiency will be degraded.

The partitioner has been implemented in Python, using the Numpy and Laspy libraries. The
partitioning algorithm is divided into two parts, in the first part it is calculated which tile each point
will go to. In the second part, the buffer is computed for each tile.

The computation of the tiles is carried out by means of a recursive function. This function is
responsible for dividing the set of points into two tiles, the division is done axially on the widest
dimension between x and y. In this way, it is possible to divide the initial set of points into tiles of
similar size as square as possible. When the created partitions have the desired size, the recursion
stops and returns.

In some types of data processing, rough partitioning can cause tile border anomalies. For ex-
ample, when we apply a Simple Morphological Filter (SMRF) to a set of points that have been par-
titioned, we can find anomalies at the border of the tile, since it is an algorithm that depends on
neighboring points. A possible solution for this problem (introduced by partitioning) is to add to
each tile a buffer with the surrounding points.

Figure 37 shows an example of the anomalies introduced by unbuffered partitioning. In Figure

Page 59 of 98

H2020 825184 RIA
20/07/2022 CloudButton

37b we can see the result of the SFRF applied to the entire file without any previous partitioning.
Figures 37c and 37d show the results of the same filter applied to the partitioned file without and
with buffer respectively. It can be seen that the result obtained in figure 37d (using the buffer) is
the same as the result of the filter applied to the entire file, on the other hand, we see that in figure
37c some anomalies are introduced when no buffer is used. Figures 37e and 37f show us how these
anomalies are introduced right at the boundaries of the partitions.

For this reason, the implemented file partitioner allows to add a buffer to each one of the tile
partitions.

Once the different tiles have been created, a buffer is added to each one. The size of the buffer
is determined by a parameter of the type float that sets the maximum distance between the buffer
points and the tile. In the buffer computation, for each tile, the minimum and maximum of the
dimensions x and y are computed and all the points of the file that meet the following condition are
added to the buffer:

{ (x, y) | xmin − b ≤ x ≤ xmax + b ∧ ymin − b ≤ y ≤ ymax + b }

Finally, the points corresponding to the buffer are marked with the withheld flag inside the Point
Data Records. This allows detecting, when processing the files in parallel, the buffer points in order
to quit them from the processing logic. Note that points belonging to the buffer of one tile will be
also contained inside another tile. We keep their data to be able to process the border points of the
tile, which are adjacent to the buffer points.

0 20 40 60 80
Partition size (MB)

0

20

40

60

80

100

120

Nu
m

be
r o

f p
ar

tit
io

ns

Coordinates-based partitions
Density-based partitions

Figure 38: Histogram comparison of coordinates-based histogram and density-based histogram for
the Tarragona LiDAR 80GB dataset.

In Figure 38 we can see a histogram comparing the partition sized of both methods: coordinates-
based and denisity-based. We can see that using the density-based partitioning, we have much less
variability of partition sizes, which proves that the points are more evenly distributed and the work-
load will be balanced among all functions.

8.2.4 Single-file partitioning performance evaluation

Although the design of the algorithm is sequential, thanks to the use of the NumPy library and the
use of vectorized instructions, parallel execution and high computational efficiency are achieved.
Below we detail the performance evaluation of the implemented partitioner.

To test and validate the performance of the program, the execution time for the partitioning of
files has been measured. We have used five files with different number of points, in particular, the
files used contained 1, 2, 4, 8 and 16 million points stored, each file has been partitioned into 10 parts

Page 60 of 98

H2020 825184 RIA
20/07/2022 CloudButton

with a similar size. The measurements have been made on a personal computer that consists of 8 GB
of ram memory and a CPU with 4 cores (Intel i5-8250U).

Figure 39 shows the results of the experiments. The partitioner takes 26.5 seconds to chunk a file
with 16 million Point Data Records, what gives us an average of 1.65 seconds per million points, a
similar measurement to the 1.45 seconds needed to chunk a file with 1 million Point Data Record.
Therefore, it can be said that the execution time grows linearly with the number of points to be
partitioned. This results proof the efficiency of the developed tool.

1 2 4 8 16
Milions of points

5

10

15

20
25
30

Ex
ec

ut
io

n
tim

e
(s

)

Figure 39: Performance evaluation of the LiDAR partitioner for a single file.

8.2.5 Partitioning of a LiDAR dataset (multiple files)

Figure 40: Area from the city of Tarragona for the 80GB LiDAR dataset.

In this section we will evaluate the performance of Lithops for prerpocessing many LiDAR files
using our density-based partitioner. While partitioning a single file is a sequential process, partition-
ing multiple files can be viewed as a parallel task. Thanks to Lithops, the partitioning task can be
mapped across multiple serverless functions in parallel. Since partitioning is a simple task, Serverless
Functions remove server management and cost while improving scalability and efficiency.

For this evaluation, a function has been developed that downloads a single LiDAR file, partitions
it using the density-based partitioner, and uploads all the partitions to Object Storage. We use Lithops
parallel map, which can automatically evaluate the objects stored in a bucket and map each function
worker its corresponding file.

We have used a data set consisting of 516 LAZ files ranging from 10MB to 90MB up to a total
of 20GB compressed (80GB uncompressed). It is comprised of the city of Tarragona and some of its
surroundings. This data set has been extracted from the Spanish National Centre of Geographical

Page 61 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 41: Timeline of the execution of the partitioning pipeline for the 80GB dataset.

Figure 42: Histogram of the execution of the partitioning pipeline for the 80GB dataset.

Information2 (Centro Nacional de Información Geográfica, CNIG). In Figure 40 we can see the area
which corresponds to this dataset.

Figures 41 and 42 represent the timeline and histogram, respecitvely, of the LiDAR partitioning
pipeline for the 80GB dataset. he experiment cost was $0.9911, with a duration of 138.22 seconds and
a data-processing throughput of 574.01 MB/s.

8.2.6 Conclusion

We contribute in regard to simplicity and productivity since we now provide a free and open source
tool for serverless distributes LiDAR data processing. Future data scientists will leverage this tool in
order to optimally process point cloud data on the Cloud with minimal effort. Also, we contribute
in performance and scalability, sice this tool is embedded into Lithops framework, which allows
to pre-process and partition many LiDAR files in parallel, e.g. 516 files, 80 GB uncompressed, in 2

2http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR.

Page 62 of 98

http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR

H2020 825184 RIA
20/07/2022 CloudButton

minutes and 18 seconds.

8.3 Preprocessing Workflow: Geospatial Models Calculation

This workflow consists of preprocessing LiDAR files in order to generate the terrain models needed
for other geospatial data streams. In particular, in this workflow LiDAR files are processed in order
to generate: Digital Elevation Models (DEM), Digital Surface Models (DSM), Canopy Height Models
(CHM), Fraction of Canopy Cover (FCC), Slope and Aspect.

• Digital Elevation Model (DEM): Represents the bare ground (bare earth) topographic surface
of the Earth, excluding biological or anthropic elements, for example, trees, buildings, and other
surface objects. In this case, we want to ignore any LiDAR classification values that may have
already been calculated so that we can derive our own. The PDAL (Point Data Abstraction
Library) is a powerful tool for processing LIDAR point cloud.

• Digital Surface Model (DSM): Represents the top of the earth’s surface, including biological
or anthropic elements, such as trees, buildings and other objects that sit on the earth.

• Canopy Height Model (CHM): Represents the height or residual distance between the ground
and the top of the objects above the ground, in other words, is the measurement of the actual
heights of trees, buildings, and other objects on the earth’s surface. This CHM is obtained by
subtracting the DTM from the DSM.

• Fraction of Canopy Cover (FCC): Represents the percentage of the area covered by a vertical
projection of the outermost perimeter of tree crowns in each pixel of a raster image.

• Slope: Represents the degree of incline of a hill side. The steeper the slope, the faster the fire
spreads, and it burns more rapidly uphill than downhill. An explanation for these two phe-
nomena is that the fuel above the fire is brought into closer contact with the upward moving
flames. Another concern about steep slopes is the possibility that burning materials roll down
the hill and ignite the fuel below the main fire. A surface fire is primarily influenced by the
amount of fuel and the wind speed, but a fire starting near the bottom of a slope in normal day-
time up slope wind conditions should spread faster and over a larger area than a fire starting
near the top of the slope. To sum up, the slope model is a raster image that represents the maxi-
mum altitude variation in each pixel of a raster image in relation to the surrounding pixels. The
units can be radians, degrees or percentage.

• Aspect: Represents the direction a slope is facing. The solar orientation generally determines
the amount of heat provided by the Sun and therefore influences the amount, condition, and
type of fuel. South southwest slopes are more exposed to sunlight and often correspond to
lighter and sparser fuels, higher temperatures, lower humidity, and lower fuel moisture. Con-
sequently, they are most critical in terms of the start and spread of wild land fires. On the
contrary, north-facing slopes are less subjected to fire activity than south-facing slopes. They
are more shaded, which leads to heavier fuels, lower temperature, higher humidity, and higher
fuel moisture. In summary, the aspect model is a raster image that represents the angle that a
slope faces with respect to the north. The units can be radians, degrees or percentage.

8.3.1 Data granularity analysis

For this workflow, we have studied the effects on performance of data granularty. In particular, how
data partitioning can affect performance.

We want to find out the ideal size of LiDAR files partitions so that we get the lowest execution
time. Using our LiDAR partitioner described in Section 8.2 allows to select the required size for each
partition. To analyze the most optimal partition size, the workflow has been executed using file sizes
of 10 MB, 20 MB, 30 MB, 40 MB, 50 MB and 60 MB. For amount of data, we used two methods: (i)

Page 63 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 43: Execution time of Terrain Models Calculation workflow for different file sizes.

execution of ten files of the same size and (ii) execution of a certain amount of files of the same size
that in total make approximately 512MB.

The size of the partitions has to be selected considering that it should not be too small to avoid
too many calls, but not too large so that the calculation of the terrain models based on the input Li-
DAR was more distributed among the workers. Figure 43 represents the execution time for different
partition sizes. From the results, it has been considered the size of a file 50MB is the most optimal,
because it is more efficient than 40MB or 60MB, slightly better than 30 MB and not as small as 10MB
or 20MB (for large quantities they would generate many calls).

8.3.2 Partitioning Comparative

In this analysis, we want to measure and compare the workflow performance impact when using raw
data (data with no prior pre-processing) and properly partitioned data using the LiDAR partitioner
from Section 8.2. The tests have been executed using different total datasets sizes, specifically, 128
MB, 256 MB, 512 MB, 1 GB, 2 GB, 5 GB and 10 GB.

One reason of performance difference is the number of files to be processed, since each serverless
function invocation has overhead, so partitioning into many smaller files can easily decrease perfor-
mance. It is also the reason for the increase in execution time besides being a completely parallel job
with no dependencies.

Figure 44: Execution time of Terrain Models Calculation workflow for different file sizes.

Figure 44 depicts the workflow execution time for different dataset sizes comparing no pre-

Page 64 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 45: Execution time of Terrain Models Calculation workflow for different file sizes.

processing with balanced partitions. We see that serverless granularity is wasted when raw data
is used, since the granularity is bigger and thus, there is less parallelism. On the other hand, thanks
to partitioning, the granularity is more fine-grained, allowing to exploit parallelism of serverless and
increase speedup. In particular, for the 10GB dataset size, the workflow execution time is 573.44
seconds for raw data and 155.51 seconds for the partitioned data. This is an improvement of 3, 68×
in terms of execution time. Also, in Figure 45, we can see the cost of the workflow execution for
different dataset sizes. As the partitioned dataset version has lower execution time, is much cheaper
in comparison with the non-pre-processed dataset version.

8.3.3 Conclusion

In terms of Key Performance Indicators of simplicity/productivity, we contribute with the geopas-
tial pipeline for LiDAR data pre-processing which creates Digital Terrain Models necessary for many
geospatial applications. Using Lithops and serverless, we can scale and adapt the resources depend-
ing on the data to be processed, which also alleviates burden on the data scientists since they don’t
need to manually manage servers and choose computing capacity. Also, we contribute to perfor-
mance/scalability since, in conjuntion with the serverless LiDAR density-based partitioner described
in Section 8.2, we can exploit parallelism of serverless functions to process data with finer granularity.
In particular, we can be 3, 68× faster when using pre-processing for a 10 GB dataset.

8.4 Preprocessing Workflow: Sentinel2 Satellite Imaging Processing

Data obtained from the ESA Sentinel2 Satellites is raw – meaning that some preprocessing is required
prior to usage in other workflows. This section describes the preprocessing workflow used to enable
Sentinel2 satellite image to be processed in parallel in many functions.

8.4.1 Sentinel2 satellite images

Sentinel2 is a constellation of two satellites from the European Space Agency Copernicus programme
that capture high-resolution images from the Earth’s surface [85]. Every five days at the equator, both
satellites cover all Earth’s land surfaces, large islands, inland and coastal waters, resulting in a huge
volume of raw satellite imaging data.

Satellite images are accessed through the Open Data portal Copernicus Open Access Hub. Data
is accessible for any user. Images, also called products, are searched using queries, like geograph-
ical area, cloud coverage or date. Then, the products are downloaded via HTTP, with a quota of
maximum two concurrent downloads per user.

Products are required to be preprocessed and perform atmospheric correction prior to being
used. Athmospheric correction is a process for satellite images where anomalies in the reflections of
the earth’s surface caused by external bodies, such as clouds or other satellites, are removed. It is
of vital importance to process these images and apply the atmospheric correction, because applying

Page 65 of 98

H2020 825184 RIA
20/07/2022 CloudButton

other processes that are based on the reflectance of the earth’s surface can give misleading or incorrect
results.

Products retrieved from the Open Data Hub are Level-1C, meaning that they are raw and not
processed. Performing atmospheric correction upgrades the product to Level-2A, which can be used
in, for example, NDVI calculation. The process to perform athmospheric correction is provided by
the Sen2Cor tool included in the Sentinel2 Toolbox [86].

This tool is to what we commonly refer as black-box: it is a process that, for a given input, it
generates an ouput, and we cannot interfere in the process. The code is not Open Source and, thus,
distributed parallelization using serverless functions is not possible. Also, the process is memory and
run time demading: the process lasts for 30 minutes in average, which greatly surpasses the limits of
serverless functions.

8.4.2 Cloud-Optimized rasters for high-performance parallel processing

Products retrieved from the Open Data Hub are stored in the JPEG 2000 file format. JPEG 2000 allows
to define high-resolution satellite image bands (Red, Green, . . .) and store multiple bands in the same
file, along with added metadata. However, with serverless fine-granularity scaling, we require data
formats to be granular and “partition-able” in order to exploit serverless function great parallelism.
Unfortunately, JPEG 2000 lacks mechanisms for fine-grained partition of images.

We introduce now The Cloud-Optimized GeoTIFF (COG) data type. COG is defined in [87] as
follows:

A Cloud Optimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at being hosted on
a HTTP file server, with an internal organization that enables more efficient workflows
on the cloud. It does this by leveraging the ability of clients issuing HTTP GET range
requests to ask for just the parts of a file they need.

Cloud-Optimized GeoTIFF incorporates multiple benefits over traditional GeoTIFF raster images.
First, data is efficiently retrieved from servers through HTTP Range requests, which enables to con-
sume only a small portion of the data instead of the whole file. Second, it reduces data duplication,
since static data chunking in different files is not needed: multiple applications access only one file
at a variable granularity. Third, it is backwards compatible with already existing geographical pro-
cessing software that can read GeoTIFF file formats.

A Cloud-Optimized GeoTIFF differs from a regular GeoTIFF in that the internal pixels of the
raster image are re-arranged in multiple square windows instead of in a continuous strip of data, so
that applications can leverage HTTP Range requests to retrieve individual windows instead of the
whole file. This proves extremely useful for partitioning on the fly a large satellite image and pro-
cess it in parallel, because functions can access portions of the image directly from Object Storage
instead of creating static partitions with different objects beforehand. Metadata is embedded into
the GeoTIFF file format that describe the number of windows and their offsets.

A part from the athmospheric correction, we also transform the satellite image to Cloud-Optimized
GeoTIFF, so that functions can effectively access it in parallel in subsequent workflows (see Section
8.5).

8.4.3 A ServerMix approach with Lithops

In short, the conclusion is clear: serverful resources are needed in order to preprocess Sentinel2
satellite images. To this end, we leverage Lithops capacity to utilize multiple compute backends
while maintaining the same user interface. We have developed multiple serverful backends for
multiple clouds (IBM Cloud Virtual Servers and AWS Batch) or for on-premise deployments (Ku-
bernetes). Thanks to Lithops multi-cloud and multi-backend desing, we can combine serverful and
serverless resources in the same workflow. For this use case, we have used AWS Batch to preprocess
Sentinel2 images. AWS Batch allows to allocate more resources (like vCPUs, memory and run time)
to functions compared to AWS Lambda. On contrast, the scalability is negatively affected, since task
invocation time is much greater (seconds to minutes) compared to FaaS (miliseconds). The reason

Page 66 of 98

H2020 825184 RIA
20/07/2022 CloudButton

being that AWS Batch has to allocate EC2 virtual machines on behalf of the user and schedule tasks
depending on the resources requested and the resources available in the compute environment.

Figure 46: Notebook portion where Serverful and Serverless Lithops are combined using in the same
notebook maintaining the same API.

Figure 46 shows a portion of the notebook for this preprocessing workflow. We can see how
the Lithops API is maintained for both serverful and serverless executions. As an example, NDVI
process is used in parallel in the same notebook using serverless functions, in order to demonstrate
mixing serverful/serverless resources in the same notebook (more on the NDVI workflow in Section
8.5).

Figure 47: NDVI of the Terra Alta region of Tarragona, Spain.

Figure 47 shows the result of applying NDVI to a product retrieved from the Sentinel2 satellite
image dataset.

Page 67 of 98

H2020 825184 RIA
20/07/2022 CloudButton

8.4.4 Conclusion

Refering to the Key Performance Indicators, we can contribute in simplicity & Productivity because
Lithops enables to combine serverful resources for demanding tasks and serverless resources for
highly flexible and parallel tasks. Since the API is maintained, the behaviour is transparent to the
user, meaning that the user does not notice of the change in respect of functionality. Also, we con-
tribute in Performance& Scalability: thanks to the costly preprocessing of raw Sentinel2 images and
converting them to Cloud-Optimized data types, we can later efficiently process that data in parallel
and avoid static partitions with many different objects (data duplication).

8.5 Geospatial Workflow: NDVI Calculation

In this section, we will describe the NDVI workflow. NDVI means "normalized difference vegeta-
tion index", and it’s an indicator that identifies whether the target being studied contains live green
vegetation or not [88].

8.5.1 Normalized Difference Vegetation Index

Chlorophyll from live green plants absorb solar radiation to be used as a source of energy in the
process of photosynthesis. Leaf cells re-emit solar radiation in the near-infrared spectral region be-
cause the photon energy at infrared wavelengths are too large to synthesize organic molecules, also
because it would overheat the cells and cause tissue damage. The cell structure of the leaves, on the
other hand, strongly reflects near-infrared light. Therefore, we can calculate the ratio of reflectance
comparing the Red band and NIR (Near-Infrared) bands of a raster image:

NDVI =
(NIR− Red)
(NIR + Red)

NDVI is useful to assess the vegetation of an area to identify potential risk of drought or wildfire
risk. In this workflow we will calculate NDVI of an area of two moments in time and calculate the
difference, which will provide insight on the areas where vegetation is degrading faster, in order to
take action and possibly avoid a wildfire risk.

Although NDVI computation is fairly simple, we want to emphasize that the computational com-
plexity is not as important as the volume of data taken into account. Computing the NDVI of a small
forest area, for example, is fast; but compute complexity scales linearly for multiple dates, for time
lapses of NDVI evolution, or for big regions, nation-wide areas of terrain.

8.5.2 Cloud-Optimized GeoTIFFs and the AWS Open Data Registry

This workflow is prepared to accept and consume the data produced in preprocessing workflow
using Sentinel2 images (see Section 8.4). In this workflow we will utilize, however, a public dataset
from Amazon Web Servicies Registry of Open Data, where Sentinel2 images are already prepared to
be utilized by applications [89].

Data is stored using the Cloud-Optimized GeoTIFF data format [87]. As explained in Section 8.4,
a Cloud-Optimized GeoTIFF file has its data arranged in multiple windows that can be accessed on
demand and by any granularity using HTTP Range requests. This feature enables to partition on-
the-fly Cloud-Optimized GeoTIFF files stored in Cloud Object Storage by many functions in parallel,
avoiding costly processes of static chunking with multiple objects, which leads to data duplication.

8.5.3 Sample execution: NDVI difference using Lithops

By processing multiple Cloud-Optimized GeoTIFF windows in parallel, we greatly exploit massive
parallelism of serverless functions. We present now a sample execution of the NDVI workflow where
the difference of NDVI comparing two different dates from multiple regions of the San Francisco area,
California, USA. In Figure 48 we can see the surface area that is going to be processed.

In total, there are 8 tiles arranged in 11× 11 windows, which add up to 968 windwos to be com-
puted. That is, 968 serverless functions running in parallel. The total dataset is 5.44 GB in size.

Page 68 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 48: Processed areas for the NDVI workflow of the San Francisco area, California, USA.

Figure 49: Timeline of the workflow sample execution.

Figures 49 and 50 represent a timeline and histogram of the workflow execution, respectively. We
see that all 986 functions are being run in parallel, which proves high scalability and parallelism of
serverless functions. The overall function run time is ≈ 4.37s, which implies to a throughput of 1.25
GB/s of data processed. Object Storage allows to read concurrently from many objects in a shared-
nothing architecture, which entails huge concurrent read throughput. The whole sample execution
cost is 0.11 USD.

Page 69 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 50: Histogram of the workflow sample execution.

Figure 51: Result of the sample NDVI workflow execution.

Figure 51 represents the result of a tile from the sample workflow execution. We can see first
both NDVI rasters from different dates. The third raster represents the difference between the two.
With this raster we can easily identify forest areas where vegetation has decreased (for example, by
wildfires or deforestation) throughout the time window.

8.5.4 Conclusion

As a conclusion, we will refer to the Key Performance Indicators obtained from this workflow. First,
we have contributed with simplicity/productivity since we now provide a tool that facilitates par-
allel processing of many Cloud-Optimized GeoTIFF files sotred in Cloud Object Storage. The data
scientist will no longer need to manually manage partitions since Lithops does it automatically with
the use of this tool. Also, we contribute to performance/scalability with the usage of serverless func-
tions for massive parallel computations. Together with the partitioning tool for Cloud-Optimized
GeoTIFFs, we provide a powerful toolset to process geospatial data at scale in the Cloud at low mon-
etary and management cost using serverless technologies.

Page 70 of 98

H2020 825184 RIA
20/07/2022 CloudButton

8.6 Geospatial Workflow: Water Consumption

This workflow consists on comparing water use estimates obtained from two different databases
over extended regions of irrigated crop fields and then map differences in the water use footprint of
irrigated arable lands in representative large areas of Peninsular Spain.

On the one hand, we use high-resolution NDVI index (Normalized Difference Vegetation Index)
derived from satellite imagery obtained from workflow NDVI Calculation (see Section 8.5), we iden-
tify actual irrigated crop areas and we estimate water consumption using multi-date imagery data
along the growing season. The continuous update of open-access databases and the utilization of the
CloudButton Toolkit capabilities make possible the mapping these variations along a certain period
of time with frequent updates.

On the other hand, we estimate and map water consumption indicators considering the officially
declared and georeferenced irrigated arable land area which is available from SIGPAC, the Geo-
graphic Information System for the Agricultural Common Policy open access database and specific
correction factors (irrigated land area where to calculate the crop water consumption volume).

The comparison of both results identifies non-coincident areas which help to monitor water use
efficiency and funding resource allocation.

Figure 52: Diagram of the Water Consumption workflow steps, data and dependencies.

In a nutshell, the workflow consists of the following steps. First, the input Digital Terrain Models
are retrieved from Object Storage and pre-processed and partitioned accordingly. We partition the
each tile in 4 chunks, in order to exploit serverless functions parallelism, increase speedup and reduce
overall execution time. For each chunk, a interpolation raster of radiance, extraterrestrial radiance,
wind, humidity and temperature are computed using metadata retrieved from the SIAM platform,
which contains point data of weather stations across the region. Then, each chunk is merged and the
original tile size is recomposed, one for each kind of interpolation raster. Finally, for each, tile, we
compute evapotranspiration using the Penman-Monteith formula and by combining all interpolation
rasters with added crop metadata by land plot.

In Figure 53 we can see the result from a tile after applying the Water Consumption workflow.
The result raster contains information of the crops fields and calculated water consumption.

8.6.1 Workflow execution sample

In this section, we describe a sample execution of the Water Consumption workflow. We have used
data obtained from the Centro Nacional de Información Geográfica (National Centre of Geographical

Page 71 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 53: Result tile of Water Consumption workflow.

Figure 54: Land area processed by the Water Consumption workflow execution sample.

Information) to process the whole autonomous community of Región de Murcia in Spain. The input
dataset consists of 36 objects of Digital Terrain Models covering the whole area, totaling 6.07 GB
which cover 11.313 square kilometers of surface area. In Figure 54 we can see the 36 tiles covering
the surface area to be processed.

Table 3 displays the execution statistics of the sample execution. We can see that we use a total of
1908 functions, with 2048 MB of memory each. The longest workflow step is radiation_interpolation
with an average time of 150 seconds. The rest of the workflow steps are relatively fast thanks in part
of partitioning in smaller chunks and exploiting parallelism. The total workflow execution has cost
1.85 USD for 6.07 GB of data processed.

Figures 55 and 56 depict a timeline and histogram, respectively, of the workflow sample exe-
cution. We can see that the maximum parallelism peak is reached at 1296 parallel functions, which

Page 72 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 55: Timeline of the Water Consumption workflow execution sample using Lithops.

Figure 56: Histogram of the Water Consumption workflow execution sample using Lithops.

corresponds to all combined functions from interpolation calculation steps. We see that the workflow
execution is very heterogeneous in terms of task execution time and granularity, and that it changes
fast and sharply across the workflow, meaning that resources needed is not steady throughout the
workflow. However, thanks to flexible resource allocation of serverless functions using Lithops, we
can always adapt to the perfect resource utilization across the whole workflow execution. Other
approaches using static serverful cluster computing resources do not have this instant flexibility,
causing over-provisioning (waste of money) or under-provisioning (waste of compute capacity).

8.6.2 Conclusion

With this workflow, we demonstrated that, with serverless computing with Lithops, we can improve
performance/scalability because the compute resources are always adapted at a very fine granular-
ity, but also in simplicity/productivity since the data analyst has no longer to worry about server
management or resource allocation. Both combined provide always-right allocation of resources,

Page 73 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Job ID Function Invocations Memory (MB) Avg Run time (s) Cost (USD)
M000 asc_to_geotiff 36 73728 0.85 0.001
M001 get_tile_meta 36 73728 1.27 0.001
M002 split_blocks 324 663552 2.63 0.029
M003 radiation_interpolation 324 663552 149.70 1.649
M004 temperature_interpolation 324 663552 3.35 0.036
M005 humidity_interpolation 324 663552 3.12 0.034
M006 wind_interpolation 324 663552 3.12 0.034
M007 merge_blocks 180 368640 8.33 0.051
M008 combine_calculations 36 73728 14.46 0.017
Summary 1908 3907584 MB 28.60 s 1.85 $

Table 3: Execution statistics for Water Consumption workflow.

which minimizes waste of compute power but also maximizes resource usage for higher parallelism.

8.7 Geospatial Workflow: Biomass Calculation

In this workflow, we will calculate the biomass of a delimited area. We will be using the Canopy
Height Model discrete LiDAR data product as well as CNIG (Spanish National Geographic Informa-
tion Center) field data on vegetation data. This process will calculate biomass for individual trees
in a forest. This workflow has been adapted and extended from NeonScience Learning Hub [90] for
Lithops and parallel distributed computing.

The calculation of biomass consists of four primary steps: First, we delineate individual tree
crowns, then we calculate predictor variables for all individuals. After that, we collecting training
data and finally we apply a regression model to estimate biomass based from predictors.

Before entering the actual calculations we first are going to explain the two main file formats used
in this pipeline:

• The ASCII Raster File format is a simple format that can be used to transfer raster data between
various applications. It is basically a few lines of header data followed by lists of cell values. In
this case, we will download maps (in .asc format) from the land we want to work on.

• GeoTIFF files are raster image file types that are commonly used to store satellite and aerial
imagery data, along with geographic metadata that describes the location in space of the image.

8.7.1 Filtered Canopy Height Models

The data obtained from the data source is in ASCII format. We convert this file to a cloud-optimized
GeoTIFF to then split it in as many smaller tiles as we want to make all calculations, in order to
exploit parallelism.

Figure 57: CHM models, raw at left, filtered at right.

Page 74 of 98

H2020 825184 RIA
20/07/2022 CloudButton

We use a Gaussian smoothing kernel (convolution) across the model to remove spurious high
vegetation points. This will help ensure we are finding the treetops properly before running a water-
shed segmentation algorithm. In Figure 57 we see the Canopy Height Model data to be processed.
At the left, we see the raw data from source, and at the right, the filtered data.

8.7.2 Determine local maximums and watershed segmentation

The next step is to to determine local maximums within the image. The footprint parameter is an
area where only a single peak can be found. This should be approximately the size of the smallest
tree. Once we run the algorithm we obtain an array which identifies each pixel being the tree tops.
As opposed to the rest of the workflow satges, this stage in particular is computationally expensive.
We will target this stage to parallelize and obtain better execution time and speedup.

Next, we will perform the watershed segmentation which produces a raster of labels. After doing
that, we will get several properties of the individual trees will be used as predictor variables and then
we will get the predictor variables to match the training data that we will use in the next stage.

Figure 58: Local maximums plot at left and watershed crown segmentation at right.

Figure 58 displays the local maximums and watershed segmentation outputs of this step.

8.7.3 Training data and Random Forest classification

The training data is a simple CSV file which contains data about biomass and the predictor variables
for tree classification. The tree diameter and max height are defined in the NEON vegetation structure
data along with the tree DBH. The field validated values are used for training, while the other were
determined from the CHM and camera images by manually delineating the tree crowns and pulling
out the relevant information from the CHM. Biomass was calculated from DBH according to the
formulas in [91].

We use Random Forest classifier and fit the predictor variables from the training data to the
Biomass estimates. Finally, we apply the Random Forest model to the predictor variables to retrieve
biomass.

Figure 59 depicts the result plot that contains the biomass data for the selected study area.

8.7.4 SpeedUp & Parallelism

In this section we will talk about what we have done to the pipeline to improve it’s performance and
reduce it’s execution time. As mentioned above, it has been achieved by applying parallelism at the
local maximum stage, which is computational expensive and can be easily parallelizable. To achieve
parallelism, we split the input data array in many chunks, process them in parallel using Lithops and
serverless functions, and then merge them together again in order to continue with the workflow.

We used a 600 MB input CHM file. Although 600 MB is relatively a small volume of data, the
sequential version of finding local maximums run for 4 hours, 21 minutes y 3 seconds (15663 seconds)
using the user’s laptop. We tested many splits in order to find maximum speedup. In particular, 4, 5,
10, 15, and 20 splits, which correspond to 16, 25, 100, 225 and 400 parallel functions respectively.

Page 75 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 59: Biomass plot for selected study area.

Figure 60: Speedup of the workflow execution by splitting the input image in many chunks to in-
crease parallelism.

In Figure 60 we can see the speedup for all splits. We see that for 20 splits, the workflow stage
run for 341.07 seconds, which translates to a speedup of 46×.

Finally, and talking about KPIs, we can say that we are able to achieve a great improvements in
simplicity/productivity because we can easily adapt existing code and paralellize compute-intensive
tasks using Lithops. Also, in performance/scalability, allowing to get speedup of up to 46× at zero
management cost.

Page 76 of 98

H2020 825184 RIA
20/07/2022 CloudButton

9 Conclusions

In this deliverable, we present the final reference implementation of the CloudButton toolkit (Lithops).
We have met the main KPIs of this project: 1. Simplicity & Productivity and 2. Performance & Scalabil-
ity & Elasticity, using three use cases with massive (un)structured data: genomics, metabolomics, and
geospatial data.

After three years, we have demonstrated that Serverless Data Analytics is a reality with a bright
future. In fact, all major Cloud providers offer today Serverless Analytics services such as Amazon
(RedShift, MSK, EMR), Google (Serverless Spark) and IBM (IBM Analytics Engine, Lithops). If in
2019 Serverless Data Analytics was a research area, today in 2022, it is a hot area populated by the
major Cloud providers. The problem is that we still have a severe vendor-locking problem that ties
users to specific deployments.

To mitigate vendor lock-in, Lithops is today a mature multi-cloud software toolkit that is used in
production in different deployments (EMBL Metaspace, IBM Finance, URV Metabolomics platform).
In this deliverable, we have demonstrated with clear KPIs how Lithops can process massive data in
parallel from three domains. Finally, we have created data partitioning and management libraries
that considerably simplify Serverless Genomics, Serverless Metabolomics, and Serverless Geospatial.

Lithops is a consolidated project that will continue its progress after the end of CloudButton. In
particular, IBM is using it, but also two startups that have been founded by CloudButton partners:
EMBL’s SpaceM and URV’s DATOMA. Serverless Computing is becoming a consolidated trend in all
public Clouds, and we foresee further technology advances that may make Serverless Data Analytics
even more popular in the next years.

Page 77 of 98

H2020 825184 RIA
20/07/2022 CloudButton

References

[1] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed com-
puting for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC’17,
2017.

[2] P. García-López, A. Slominski, S. Shillaker, M. Behrendt, and B. Metzler, “Serverless end game:
Disaggregation enabling transparency,” arXiv preprint arXiv:2006.01251, 2020.

[3] J. Sampé, P. Garcia-Lopez, M. Sánchez-Artigas, G. Vernik, P. Roca-Llaberia, and A. Arjona, “To-
ward multicloud access transparency in serverless computing,” IEEE Software, vol. 38, no. 1,
pp. 68–74, 2020.

[4] D. Barcelona-Pons and P. García-López, “Benchmarking parallelism in faas platforms,” Future
Generation Computer Systems, vol. 124, pp. 268–284, 2021.

[5] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-
man, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’17), 2017.

[6] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov,
and C. Wu, “Serverless computing: One step forward, two steps back,” arXiv preprint
arXiv:1812.03651, 2018.

[7] E. J. et al, “Cloud programming simplified: A berkeley view on serverless computing,”
https://arxiv.org/abs/1902.03383, 2019.

[8] CloudButton Consortium, “Deliverable D2.1 - Experiments and Initial Specifications.”

[9] J. Sampe, M. Sanchez-Artigas, P. Garcia Lopez, and G. Paris, “Data-driven serverless functions
for object storage,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
Middleware ’17, (New York, NY, USA), pp. 121–133, ACM, 2017.

[10] Y. Kim and J. Lin, “Serverless data analytics with Flint,” CoRR, vol. abs/1803.06354, 2018.

[11] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica, B. Recht, and J. Ragan-Kelley,
“numpywren: serverless linear algebra,” 2018.

[12] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on
serverless infrastructure,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), (Boston, MA), pp. 193–206, USENIX Association, 2019.

[13] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and K. Winstein,
“From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional con-
tainers,” in 2019 USENIX Annual Technical Conference (ATC’19), pp. 475–488, 2019.

[14] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “SAND: To-
wards high-performance serverless computing,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 923–935, 2018.

[15] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 427–444, USENIX Association, 2018.

[16] D. B. Pons, P. G. López, Á. R. Ollobarren, A. Gómez-Gómez, G. París, and M. S. Artigas,
“Faas orchestration of parallel workloads,” in Proceedings of the 5th International Workshop
on Serverless Computing, WOSC@Middleware 2019, Davis, CA, USA, December 09-13, 2019,
pp. 25–30, ACM, 2019.

Page 78 of 98

H2020 825184 RIA
20/07/2022 CloudButton

[17] P. García López, M. Sánchez-Artigas, G. París, D. Barcelona Pons, Á. Ruiz Ollobarren, and
D. Arroyo Pinto, “Comparison of faas orchestration systems,” in 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 148–153, IEEE,
2018.

[18] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concepts and Design.
USA: Addison-Wesley Publishing Company, 5th ed., 2011.

[19] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on diåstributed computing,” in
International Workshop on Mobile Object Systems, pp. 49–64, Springer, 1996.

[20] T. Wagner, “The Serverless SuperComputer,” 2019.

[21] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ousterhout, “It’s time for low
latency.,” in HotOS, vol. 13, pp. 11–11, 2011.

[22] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the killer microseconds,”
Communications of the ACM, vol. 60, no. 4, pp. 48–54, 2017.

[23] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter rpcs can be general and fast,” in 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pp. 1–16,
2019.

[24] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and E. Bugnion, “R2p2: Making rpcs first-class data-
center citizens,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 863–880,
2019.

[25] C. Lee and J. Ousterhout, “Granular computing,” in Proceedings of the Workshop on Hot Topics
in Operating Systems, HotOS ’19, p. 149–154, 2019.

[26] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy, and
S. Shenker, “Network requirements for resource disaggregation,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pp. 249–264, 2016.

[27] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated, distributed OS for hard-
ware resource disaggregation,” in 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pp. 69–87, 2018.

[28] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. Anderson, and T. Roscoe,
“Arrakis: The operating system is the control plane,” ACM Transactions on Computer Systems
(TOCS), vol. 33, no. 4, pp. 1–30, 2015.

[29] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at what cost?,” in 15th Workshop on
Hot Topics in Operating Systems (HotOS 15), 2015.

[30] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient memory disaggregation with
infiniswap,” in 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pp. 649–667, 2017.

[31] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-López, “On the FaaS
track: Building stateful distributed applications with serverless architectures,” in Proceedings
of the 20th International Middleware Conference, pp. 41–54, 2019.

[32] J. Zhi, R. Wang, J. Clune, and K. O. Stanley, “Fiber: A platform for efficient development and
distributed training for reinforcement learning and population-based methods,” arXiv preprint
arXiv:2003.11164, 2020.

Page 79 of 98

H2020 825184 RIA
20/07/2022 CloudButton

[33] K. Jayaram, V. Muthusamy, P. Dube, V. Ishakian, C. Wang, B. Herta, S. Boag, D. Arroyo,
A. Tantawi, A. Verma, et al., “Ffdl: A flexible multi-tenant deep learning platform,” in
Proceedings of the 20th International Middleware Conference, pp. 82–95, 2019.

[34] S. Shillaker and P. Pietzutch, “Faasm: Lightweight isolation for efficient stateful serverless com-
puting,” in 2020 USENIX Annual Technical Conference (USENIX ATC 19), 2020.

[35] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. Bastien, “Bringing the web up to speed with WebAssembly,” Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation - PLDI
2017, pp. 185–200, 2017.

[36] WebAssembly, “WASM Module Specification,” 2020.

[37] Mozilla, “WASI: WebAssembly System Interface,” 2020.

[38] A. Arjona, G. Finol, and P. Garcia-Lopez, “Transparent serverless execution of python multipro-
cessing applications,” 2022.

[39] “Redis.” https://redis.io/.

[40] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Disk-locality in datacenter comput-
ing considered irrelevant.,” in HotOS, vol. 13, pp. 12–12, 2011.

[41] L. Liu, W. Cao, S. Sahin, Q. Zhang, J. Bae, and Y. Wu, “Memory disaggregation: Research prob-
lems and opportunities,” in 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), pp. 1664–1673, IEEE, 2019.

[42] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm: Fast remote memory,” in 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pp. 401–
414, 2014.

[43] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra,
A. Narayanan, D. Ongaro, G. Parulkar, et al., “The case for ramcloud,” Communications of
the ACM, vol. 54, no. 7, pp. 121–130, 2011.

[44] Y. Huang, X. Yan, G. Jiang, T. Jin, J. Cheng, A. Xu, Z. Liu, and S. Tu, “Tangram: bridging
immutable and mutable abstractions for distributed data analytics,” in 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pp. 191–206, 2019.

[45] RISELab, “Apache Ray.” https://github.com/ray-project/ray.

[46] P. Stuedi, A. Trivedi, J. Pfefferle, A. Klimovic, A. Schuepbach, and B. Metzler, “Unifica-
tion of temporary storage in the nodekernel architecture,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pp. 767–782, 2019.

[47] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory devices and
applications for in-memory computing,” Nature Nanotechnology, pp. 1–16, 2020.

[48] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind the Curtains of Serverless
Platforms,” in USENIX Annual Technical Conference, 2018.

[49] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.-M.
Popa, “Firecracker: Lightweight Virtualization for Serverless Applications,” in 17th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 20), 2020.

[50] V. Sreekanti, C. W. X. C. Lin, J. M. Faleiro, J. E. Gonzalez, J. M. Hellerstein, and A. Tumanov,
“Cloudburst: Stateful functions-as-a-service,” arXiv preprint arXiv:2001.04592, 2020.

Page 80 of 98

https://redis.io/

H2020 825184 RIA
20/07/2022 CloudButton

[51] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky, “Putting the "Micro" Back in Microser-
vice,” USENIX Annual Technical Conference (USENIX ATC), 2018.

[52] Microsoft Research, “Krustlet.”

[53] A. Baumann, J. Appavoo, O. Krieger, and T. Roscoe, “A fork() in the road,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, HotOS 2019, HotOS ’19, ACM, 2019.

[54] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko, “One VM to rule them all,” in ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, 2013.

[55] D. Buchaca, J. Marcual, J. L. Berral, and D. Carrera, “Sequence-to-sequence models for workload
interference prediction on batch processing datacenters,” Future Generation Computer Systems,
2020.

[56] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted resource management
in multi-tenant distributed systems,” in 12th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 15), pp. 589–603, 2015.

[57] M. Brooker, T. Chen, and F. Ping, “Millions of tiny databases,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pp. 463–478, 2020.

[58] Github, “Smile (statistical machine intelligence and learning engine).”
https://github.com/otrack/smile.

[59] Contributors of PyWren for IBM Cloud, “PyWren on Knative.” https://github.com/pywren/
pywren-ibm-cloud/blob/master/docs/knative.md, 2020.

[60] LSDS Group, “Faasm Kubernetes/ Knative integration.” https://github.com/lsds/faasm/
blob/master/docs/kubernetes.md, 2020.

[61] P. G. López, A. Arjona, J. Sampé, A. Slominski, and L. Villard, “Triggerflow: Trigger-based or-
chestration of serverless workflows,” in Proceedings of the 14th Annual ACM Conference on
Distributed Event Based Systems, DEBS ’20, 2020.

[62] “Apache Airflow.” https://github.com/apache/airflow, 2018.

[63] CloudButton Consortium, “Deliverable D4.2 - Specification and partial support for degradable
objects.”

[64] CloudButton Consortium, “Deliverable D5.2 - CloudButton Prototype of Abstractions, Fault-
tolerance and Porting Tools.”

[65] Amazon, “AWS Lamda.” https://docs.aws.amazon.com/lambda/.

[66] IBM, “Cloud Functions.” https://cloud.ibm.com/docs/openwhisk.

[67] Amazon, “AWS Fargate.” https://aws.amazon.com/fargate/, 2017.

[68] Google, “Google Cloud Run.” https://cloud.google.com/run/, 2019.

[69] “Knative Platform.” https://cloud.google.com/knative/, 2019.

[70] KEDA, “Kubernetes-based event-driven autoscaling.” https://keda.sh/.

[71] E. N. Archive, “Statistics.” https://www.ebi.ac.uk/ena/browser/about/statistics, 2022.

Page 81 of 98

https://github.com/pywren/pywren-ibm-cloud/blob/master/docs/knative.md
https://github.com/pywren/pywren-ibm-cloud/blob/master/docs/knative.md
https://github.com/lsds/faasm/blob/master/docs/kubernetes.md
https://github.com/lsds/faasm/blob/master/docs/kubernetes.md
https://github.com/apache/airflow
https://docs.aws.amazon.com/lambda/
https://cloud.ibm.com/docs/openwhisk
https://aws.amazon.com/fargate/
https://cloud.google.com/run/
https://cloud.google.com/knative/
https://keda.sh/
https://www.ebi.ac.uk/ena/browser/about/statistics

H2020 825184 RIA
20/07/2022 CloudButton

[72] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C. Notredame, “Nextflow
enables reproducible computational workflows,” Nature biotechnology, vol. 35, no. 4, pp. 316–
319, 2017.

[73] S. Marco-Sola, M. Sammeth, R. Guigó, and P. Ribeca, “The gem mapper: fast, accurate and
versatile alignment by filtration,” Nature methods, vol. 9, no. 12, pp. 1185–1188, 2012.

[74] L. Ferretti, C. Tennakoon, A. Silesian, G. Freimanis, and P. Ribeca, “Sinple: Fast and sensitive
variant calling for deep sequencing data,” Genes, 2019.

[75] “OCaml website.” https://ocaml.org, 2020.

[76] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless com-
puting,” in USENIX Annual Technical Conference (USENIX ATC), 2020.

[77] LSDS Group, “Faasm Python Support.” https://github.com/faasm/python, 2020.

[78] LSDS Group, “Faasm C/C++ Support.” https://github.com/faasm/cpp, 2020.

[79] S. Marco-Sola, M. Sammeth, R. Guigó, and P. Ribeca, “The gem mapper: fast, accurate and
versatile alignment by filtration,” Nature Methods, 2012.

[80] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The sanger fastq file format for
sequences with quality scores, and the solexa/illumina fastq variants,” Nucleic acids research,
vol. 38, no. 6, pp. 1767–1771, 2010.

[81] Luc van Donkersgoed, “Aws re:invent 2020 day 3: Optimizing
lambda cost with multi-threading.” https://www.sentiatechblog.com/
aws-re-invent-2020-day-3-optimizing-lambda-cost-with-multi-threading, 2022.

[82] IBM, “IBM Topics: What is geospatial data?,” 2022.

[83] T. A. S. for Photogrammetry & Remote Sensing, LAS Specification 1.4 - R14. The American
Society for Photogrammetry & Remote Sensing, 2019.

[84] M. Isenburg, “Laszip: lossless compression of lidar data,” Photogrammetric Engineering &
Remote Sensing, vol. 79, 02 2013.

[85] ESA, “Introducing Sentinel-2,” 2022.

[86] ESA, “Sen2Cor Process,” 2022.

[87] COGEO Contributors, “Cloud-Optimized GeoTIFF specification,” 2022.

[88] Wikipedia, “Normalized difference vegetation index,” 2022.

[89] Amazon Web Services, “Registry of Open Data on AWSPowered by AWS Cloud Computing:
Sentinel2,” 2022.

[90] T. Goulden, “Calculate Vegetation Biomass from LiDAR Data in Python,” 2022.

[91] J. C. Jenkins, “National-scale biomass estimators for united states tree species.,” 2003.

Page 82 of 98

https://ocaml.org
https://github.com/faasm/python
https://github.com/faasm/cpp
https://www.sentiatechblog.com/aws-re-invent-2020-day-3-optimizing-lambda-cost-with-multi-threading
https://www.sentiatechblog.com/aws-re-invent-2020-day-3-optimizing-lambda-cost-with-multi-threading

H2020 825184 RIA
20/07/2022 CloudButton

10 Annex 1: Questionnaire Template

In order to evaluate the usability of one of the CloudButton core components, Lithops, the project has
launched a survey, circulated among use cases, to gather their feedback about their user experience.
The questionnaire was designed to be answered by those not directly involved in the project who
can provide valuable feedback for improving the solution. Several aspects, from applicability to
elasticity or even costs, were taken into account. Results of the survey were used to validate the
proposed solution and improve the QoE.

10.1 CloudButton Questionnaire

Participating in the CloudButton project has given you the opportunity to improve your use cases
testing some of the core project functionalities. Your feedback will be very valuable to evaluate and
improve the toolkit you used. Please reply to the following questions and let use know your opinion.
It won’t take more than 20 minutes.

Select your use case:
Genomics / Metabolomics / Geospatial / Other (specify which one)
A. Applicability
Rate Lithops with regards the applicability to your use case.
Transparency in cloud computing is the capability of enabling local and remote resources to

be accessed using identical operations. Rate how Lithops achieves transparency and smooth tran-
sition to remote cloud resources

Rate from 1 (Very low) to 5 (Very high)
Does Lithops achieve transparency and a smooth transition from private cloud to remote cloud

resources?
Rate from 1 (Very low) to 5 (Very high)
How do you define your use case (batch analytics, interactive, streaming)? Is Lithops appro-

priate for this use case? Justify your answer.
Long-answer text
Did you detect any limitation when using Lithops in terms of productivity?
Long-answer text
B. Simplicity
Rate Lithops simplicity (ease of use) as a platform for developing Big Data applications.
APIs interface
Rate from 1 (Very difficult) to 5 (Very easy)
Configuration management
Rate from 1 (Very difficult) to 5 (Very easy)
Store management
Rate from 1 (Very difficult) to 5 (Very easy)
Failure management
Rate from 1 (Very difficult) to 5 (Very easy)
Resource management
Rate from 1 (Very difficult) to 5 (Very easy)
Multi-cloud backend management
Rate from 1 (Very difficult) to 5 (Very easy)
Big data pipeline management
Rate from 1 (Very difficult) to 5 (Very easy)
Integration with existing apps and libraries
Rate from 1 (Very difficult) to 5 (Very easy)
Fine grained resource management (GPUs, large VMs)
Rate from 1 (Very difficult) to 5 (Very easy)
Code development
Rate from 1 (Very difficult) to 5 (Very easy)
Data manipulation

Page 83 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Rate from 1 (Very difficult) to 5 (Very easy)
Productivity and time gains in resource management
Rate from 1 (Very difficult) to 5 (Very easy)
Productivity and time gains in code development
Rate from 1 (Very difficult) to 5 (Very easy)
C. Productivity
Rate Lithops productivity (efficiency achieved compared with other tools or setups that you may

know) as a platform for developing Big Data applications.
APIs interface
Rate from 1 (Very low) to 5 (Very high)
Configuration management
Rate from 1 (Very low) to 5 (Very high)
Store management
Rate from 1 (Very low) to 5 (Very high)
Failure management
Rate from 1 (Very low) to 5 (Very high)
Resource management
Rate from 1 (Very low) to 5 (Very high)
Multi-cloud backend management
Rate from 1 (Very low) to 5 (Very high)
Big data pipeline management
Rate from 1 (Very low) to 5 (Very high)
Integration with existing apps and libraries
Rate from 1 (Very low) to 5 (Very high)
Fine grained resource management (GPUs, large VMs)
Rate from 1 (Very low) to 5 (Very high)
Code development
Rate from 1 (Very low) to 5 (Very high)
Data manipulation
Rate from 1 (Very low) to 5 (Very high)
Productivity and time gains in resource management
Rate from 1 (Very low) to 5 (Very high)
Productivity and time gains in code development
Rate from 1 (Very low) to 5 (Very high)
D. Scalability, Elasticity and Performance
Rate how useful the toolkit was for your experiments.
Could you scale correctly your experiments?
Rate from 1 (Completely disagree) to 5 (Totally agree)
Was the maximum parallelism reached in compute functions enough in terms of performance
Rate from 1 (Completely disagree) to 5 (Totally agree)
Were the maximum data volumes processed in your experiments enough in terms of perfor-

mance?
Rate from 1 (Completely disagree) to 5 (Totally agree)
Was the reduction experimented in execution time enough in terms of performance?
Rate from 1 (Completely disagree) to 5 (Totally agree)
Was the benefit from managing more data per second enough in terms of performance?
Rate from 1 (Completely disagree) to 5 (Totally agree)
Are your experiments dynamic in the use of resources or they use always the same resources?
Rate from 1 (Completely disagree) to 5 (Totally agree)
Did you find any limitations in Lithops in terms of scalability/elasticity?
Long-answer text
E. Cost

Page 84 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Rate the savings you found in your experiments.
Improvements in your experiments’ costs in terms of cloud resources.
Rate from 1 (Very low) to 5 (Very high)
Improvements in the development cost of your experiments.
Rate from 1 (Very low) to 5 (Very high)
Improvements in the cloud management cost of your experiments: provisioning and configu-

ration.
Rate from 1 (Very low) to 5 (Very high)
Improvements with respect previous technologies used: cluster computing, dedicated comput-

ing, VMs.
Rate from 1 (Very low) to 5 (Very high)
Improvements from the use of pay-as-you-go serverless model.
Rate from 1 (Very low) to 5 (Very high)
Did you detect any limitation when using Lithops in terms of costs?
Long-answer text
F. Learning and documentation
Rate how easy it was to use the toolkit with the available information.
In general terms, did you find Lithops easy to use?
Rate from 1 (Very difficult) to 5 (Very easy)
In case you made use of Lithops documentation, was it easy to understand and reliable?
Rate from 1 (Very difficult) to 5 (Very easy)
In case you made use of Community support, was it helpful and reliable?
Rate from 1 (Very difficult) to 5 (Very easy)
Did you find any problem when learning or debugging Lithops? Please, explain your answer.
Long-answer text
How user friendly (in terms of usability) did you find Lithops?
Rate from 1 (Very difficult) to 5 (Very easy)
How useful do you find Lithops to scale applications?
Rate from 1 (Not useful) to 5 (Very useful)
Do you think you have been able to do the same work in the same time without using Lithops?
Yes / No
G. System Evaluation
Rate your user experience and share your suggestions for improvement.
How would you rate your experience using Lithops?
Rate from 1 (Not satisfying) to 5 (Very satisfying)
Which functionalities do you consider as the most useful ones?
Scalability / Performance / Elasticity / Parallelization / Productivity / Other (specify which one)
Do you have any suggestion for improving the system?
Long-answer text
Is there any functionality not considered within the system that you see as a ’nice-to-have’

one?
Long-answer text
How do you assess the benefit from releasing resources management overhead?
Long-answer text

Page 85 of 98

H2020 825184 RIA
20/07/2022 CloudButton

11 Annex 2: Answers to the CloudButton Questionnaire

CloudButton survey has been filled up by 16 participants representing the use cases, but not directly
involved in the project development.

Figure 61: Participants in the survey

Surveyees used Lithops to perform tests on their use cases for the first time, without having
any prior knowledge about it. In this way, they provided a ’clean’ view on how the tool performs,
identifying the strongest points and how it can be improved.

There is only one participant selecting Other, and the answers belongs to distributed computing
in general.

Participants rated Lithops in seven different aspects, and results are as follows:

11.1 Applicability

Figure 62: Lithops transparency rating

9 out of 16 participants considered Lithops has a very high level of transparency in its operations
when transitioning for the first time to the cloud. While the rest considered that the level is still high.
When rating the transition from private cloud resources to remote cloud resources, answers are quite

Page 86 of 98

H2020 825184 RIA
20/07/2022 CloudButton

similar. This means that all participants positively rate the usage of Lithops for a smooth transition
to remote cloud resources.

In order to understand how much applicable Lithops is to different scenarios, they survey asked
about the different nature of the use cases.

Figure 63: Types of use cases

All the respondents consider that the tool is appropriate for their use cases, highlighting the ben-
efits parallelism and scalability functionalities are bringing to them, in terms of efforts, costs and
invested time. Regarding its comparison with other tools, respondents find very satisfying the ab-
sence of need for installing other vendor specific tools, such as CLI or SDK, while they are missing
the integration with other intermediate tools, such as redis. At the same time, 11 out of 16 respon-
dents did not find any significant limitation preventing them fro using Lithops in the near future.
Regarding the others, 1 considered that the quality of the documentation can be improved. As by the
time Lithops was tested it was still under development, further improvements in the documentation
have been provided. 2 considered that configuring it was not an easy task. Further instructions for
addressing this specific issue will be provided in the final version of the documentation. And finally,
the other 2 found difficult to import custom libraries when creating the Docker image.

11.2 Simplicity

Another aspect about Lithops to be assessed is its ease to use compared with other existing tools.
In terms of simplicity, or how easy was to use Lithops, most of the respondents valued positively

the provided interface. At the same time, failure and multi-cloud backend management got the high-
est scores in terms of ease of use. Other aspects, such as storage, resource and big data pipeline
management were also well valued in terms of simplicity. However, there were some critics regard-
ing the configuration management. Although it still got high scores, some users found it a little bit
complicated to use. Finally, it was quite appreciated the possibility of easily integrate it with already
existing applications and libraries and the additional gains in terms of resource management and
code development.

11.3 Productivity

Participants in the survey also evaluated the efficiency of Lithops compared with other tools.
As it happened while evaluating the simplicity of the tool, most of the respondents considered as

one of Lithops strongest points its APIs interface. Other very well valued aspects were the produc-
tivity and time gains in resource management and code development, what increases productivity
not only on the application, but on design time. However, there are some aspects like failure man-

Page 87 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 64: Ease of use

agement or fine-grained resource management that needs to be improved. Overall, the evaluation of
the tool was pretty good taking into account the given maturity of the solution.

11.4 Scalability, Elasticity and Performance

Participants in the survey rated Lithops in terms of the scalability achieved in their experiments,
taking into account that 14 out of 16 of them are dynamic in terms of use of resources, while only 2
of them use always the same ones.

In terms of scalability, 8 out of 16 respondents totally agree with Lithops allowing a proper scaling
up of their experiments, while 7 out of 16 agree with the statement. None of the respondents faced
any issue scaling up any application while performing their experiments. At the same time, 8 out of
16 respondents (on average) considered enough in terms of performance the parallelism reached, the
increased number of data volumes processed, and the reduction experimented in execution time, as
well as the increased benefits for managing more data per second. Some of them found limitations
not related to Lithops but to specific cloud resources, or time and memory limitations of given FaaS
functions.

11.5 Cost

Respondents also rated Lithops in terms of cost savings within their experiments.
Most of the respondents found a significant improvement in terms of costs using Lithops for exe-

cuting their experiments or even comparing it with previously used technologies, such as dedicated
computers, virtual machines or cluster computing. However, there is still one weak point related to
monitoring cloud billing as it maily relies on the provider and not on the tool. Thus, this additional

Page 88 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 65: Lithops Productivity

Figure 66: Proper scalability of experiments

functionality is out of the scope of the project.

11.6 Learning and documentation

Another aspect to evaluate was the available documentation and the quality of the information pro-
vided to use Lithops toolkit.

According to the participants in the survey Lithops toolkit is easy to use, user friendly and very

Page 89 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 67: Improvements in terms of cost

Figure 68: Lithops documentation assessment

useful to scale applications. Community support was also very well valued by those who made
use of it. However, the existing documentation was sometimes difficult to follow due to a lack of
examples or debugging information. Since the time performing the experiments, a new version of
the documentation has been released to make it easier to follow for external readers. At this stage
it is important to highlight that only 2 out of 16 respondents considered that they will be able to do
the same work at the same time without using Lithops. While the rest considered that used Lithops
significantly reduced the amount of work and time needed to develop the applications and perform
the experiments.

Page 90 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Figure 69: Overall system evaluation

11.7 System Evaluation

In general terms, 8 out of 16 respondents rated the overall experience using Lithops for performing
their experiments as very satisfying, while the rest rated it as satisfying.

According to the benefits gained using Lithops to develop applications and perform experiments,
nearly a half of the respondents considered parallelization as the most useful one, followed by scala-
bility, productivity and performance. As expected, due to the evaluation of other aspects, suggestions
for improvement includes better documentation and more promotion of the toolkit itself. Respon-
dents also suggested some nice-to-have functionalities on top of the existing ones, like machine learn-
ing support or stateful processing. Overall, all of them rated the experience as very positive mainly
due to time savings and increased productivity.

Page 91 of 98

H2020 825184 RIA
20/07/2022 CloudButton

12 Annex 3: Serverless variant caller READMEs

12.1 Installation requirements

12.1.1 Install local dependencies (where the script is executed):

python 3.8 and pip install Lithops\[aws\]

redis (redis-cli)

edirect (if using SRA option):

sh -c \
"$(wget -q ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh -O -)"

Important to have the new script added binaries to the PATH variable of the shell used to
launch the variant caller.

12.1.2 Build and upload the runtime

cd dockerfile && \
Lithops runtime build -f Dockerfile -b aws_lambda lumimar/hutton-genomics-v03:13

12.2 Running the variant caller

This is a command line example in which all configurable parameters are made explicit, although
many have default values that can be used so that only few parameters are actually required.

python varcall_Lithops_demo_v5.py -fq ERR9729866 -fa hg19.fa -cl aws \
-b cloudbutton-variant-caller-input -fb ayman-Lithops-meta-cloudbutton-hutton \
-ds SRA -nfq 2000000 -nfa 100000000 -ofa 300 -rl 152 -t 0 -ff csv -S3w False \
-rt lumimar/hutton-genomics-v03:18 -rtm 4096 -rtr 4096 -bs 75% -ftm 900 -ftr 900 \
-sk False -ip 54.146.89.181 -id i-0cee52f66655d990b -rg us-east-1

A wrapper script, run_variant_caller_v2.sh, allows to run the variant caller with these addi-
tional features: - inputting command line arguments from a table varcall_args.tsv - sorting live
function log by function number for readability - extraction of summary stats for the run, to quickly
identify where the run might be failing - summary stats linked to log file and to command line
arguments - generation of plots with time of various pipeline stages and size of intermediate files
generated - specifying command and run id, and how many repeats of the script to run, if testing
reproducibility.

Here is a command line example:

bash run_variant_caller_v2.sh varcall_args.tsv 1 1 True

The four command lines arguments are: 1. variant caller argument table, 2. run id (if same
settings run multiple times), 3. number of iterations (if script run multiple times), 4. whether to
run the variant caller (True) or just process the log file (False). The latter is useful in the event of
an aborted run, as it processes the existing incomplete log and generates plots and info to quickly
identify where a problem arose.

Together with the sorted log and a series of tables (all saved to the varcall_out subfolder), the
script also adds lines to the summary file varcall_results_summary.tsv, providing basic stats about
the number of functions that “made it” through the various stages of the pipeline. Its output also
includes the initial commandline, and is also present at the end of the log file.

The args varcall_args.tsv has two header lines, with short and long argument option names
(presented here in column format, first two columns in table below)

Page 92 of 98

H2020 825184 RIA
20/07/2022 CloudButton

short option name long option name explanation example

run_n #NA NA #1
fq fq_seq_name FASTQ sequence name SRR15068323
fq1 FASTQ1 FASTQ file name 1 NA
fq2 FASTQ2 FASTQ file name 2 NA
fa FASTA FASTA file name hg19.fa
cl cloud_adr cloud provider aws
b bucket bucket cloudbutton-variant-caller-input
fb fbucket bucket for FASTA file ayman-Lithops-meta-cloudbutton-hutton
ds data_source SRA or S3 SRA
nfq FASTQ_read_n number of reads per FASTQ chunk 800000
nfa FASTA_char_n number of characters per FASTA chunk 100000000
ofa FASTA_char_overlap overlap between FASTA chunks 300
rl read_length read length (to calculate approx FASTQ size) 152
t tolerance number of additional strata to include in alignment output 0
ff file_format mpileup file format conversion choice (csv or parquet) csv
itn iterdata_n Number of functions to launch (all if empty) 5
S3w temp_to_S3 saving temporary files to S3 for debugging FALSE
rt runtime_id lambda function runtime id lumimar/hutton-genomics-v03:18
rtm runtime_mem memory associated with map function 4096
rtr runtime_memr memory associated with reduce function 4096
bs buffer_size size of buffer in reduce function 75%
ftm func_timeout_map timeout for map functions 900
ftr func_timeout_reduce timeout for reduce functions 900
sk skip_map skip map function if debugging reduce phase FALSE
ip ec2ip ec2 IP for redis 54.146.89.181
id ec2id ec2 id for redis i-0cee52f66655d990b
rg ec2region ec2 region us-east-1

12.3 Running the variant caller using Docker on AWS EC2

Here, we provide instructions to run the variant_caller client using a pre-built Docker image running
in an AWS EC2 VM. Docker is a platform that allows you to build and deploy packaged software
environments (“containers”). Combining this with the use of AWS Virtual Machines (VMs), you can
get up-and-running quickly, without the need to leverage local resources.

12.3.1 Virtual Machine configuration

VM setup on AWS

Configuring the virtual machine instance follow the same process used for configuring the redis
server, with only a small exception with respect to the storage configuration (see below). Note that
the below steps have only been tested on the Ubuntu 20.04 instance type, which is free-tier eligible,
thus we recommend this as the OS selection.

To set up your AWS account for running the Lithops variant caller in a VM, see this guide.
Once your account is setup, reference section 1 (Virtual Machine Configuration) from the redis-

server setup documentation.

Storage configuration

When selecting your disk storage size, the total size will at minimum need to be large enough to
host the docker image (tkchafin/varcall_client). Uncompressed, this is >3GB. Additionally, sufficient
space will be needed to temporarily store the input FASTQ file in /tmp during the pre-processing
phase, unless indexes are already present in the S3 bucket.

Connecting to the VM via SSH

If configured correctly to allow incoming SSH traffic (see section 1.4: Network Configuration from the
redis-server documentation), you should be able to now SSH directly to the running instance using
the private key file specified in the VM configuration: ssh -i private_key.pem ubuntu@<VirtualMachine_DNS>

Note that the username is ubuntu and the may be found in the instance summary, under “Public
IPv4 DNS” (it will look like ec2-##-###-##-##.compute-1.amazonaws.com).

After running this, you should notice your terminal prompt has changed to:

ubuntu@ip-###-##-##-##:~$

Page 93 of 98

https://github.com/Damian-MG/CloudButton-Redis-Installation/blob/main/AWS_account_configuration.md
https://github.com/Damian-MG/CloudButton-Redis-Installation
https://github.com/Damian-MG/CloudButton-Redis-Installation
https://hub.docker.com/repository/docker/tkchafin/varcall_client
https://github.com/Damian-MG/CloudButton-Redis-Installation
https://github.com/Damian-MG/CloudButton-Redis-Installation

H2020 825184 RIA
20/07/2022 CloudButton

12.3.2 Docker configuration in the VM

Once you have verified that you can successfully access the VM instance from your local machine,
you are ready to configure the docker. Note that here there are several steps which will need to be
completed either from the your local computer, and others from the VM, accessed using SSH (see
Section 1.3 above).

For convenience, we recommend opening two terminals, one running locally, and another con-
nected to the VM via SSH.

Installing docker in the VM

This step occurs on the VM. Here, you will install docker. Docker installation follows the Docker
documentation, with commands excerpted below for convenience (with some slight modifications):

ssh to the running VM instance
ssh -i private_key.pem ubuntu@<VirtualMachine_DNS>

remove previous versions (just in case)
sudo apt-get remove docker docker-engine docker.io containerd runc

set up the repository
sudo apt-get update && sudo apt-get install -y ca-certificates curl gnupg lsb-release

add Docker's official GPG key
sudo mkdir -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \

sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg

set up repo
echo \

"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] \
https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

install docker engine
sudo apt-get update && \

sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-compose-plugin

add user to docker group
sudo usermod -a -G docker ubuntu

Now, you can pull the pre-built docker image from our public DockerHub repository:

docker pull
docker pull tkchafin/varcall_client:0.2

If you want to make modifications to the docker image, or build it yourself, see Section 3: Building
the container from scratch (below).

Install variant_caller code on the VM

Next, you will need a copy of the variant_caller repository on the VM. From your VM SSH terminal,
first install git and then clone the repo:

Page 94 of 98

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

H2020 825184 RIA
20/07/2022 CloudButton

install git
sudo apt-get install -y git

clone repository
git clone https://gitlab1.bioss.ac.uk/lmarcello/serverless_genomics.git

if using a development branch, checkout that branch, e.g.,
git checkout some_dev_branch

Upload user configuration files to VM

Now, from your local terminal, you need to upload your Lithops configuration and AWS credentials
files.

Examples of both are provided in the variant_caller repository at

./serverless_genomics/variant_caller/varcall_client.

To upload them, you can simply use scp, pointing to your private key file (the same used for SSH
access to the VM):

#upload aws credentials
scp -i private_key.pem <1: 1 windows (created Wed Jun 29 17:31:54 2022)
/path/to/.aws/credentials> ubuntu@<VirtualMachine_DNS>:/root/aws_credentials

upload Lithops config
scp -i private_key.pem </path/to/.Lithops/config> \

ubuntu@<VirtualMachine_DNS>:/root/Lithops_config

Running the Docker container

From the VM terminal, you can then run the Docker. We have provided a convenience script for you,
which “mounts” the necessary files from the EC2 environment so that they are accessible within the
container.

These are:

EC2 Path Container Path Description

/tmp /tmp This is where the Lithops logs will be written (to
/tmp/Lithops/logs)

/home/ubuntu/serverless_genomics /root/serverless_genomics Copy of the variant_caller gitlab repository. This
contains the code for running the Docker
container, as well as the code for running the
pipeline

/home/ubuntu/aws_credentials /root/credentials AWS credentials file (containing your super-secret
key information). Inside the container, this is set to
the environmental variable
AWS_SHARED_CREDENTIALS_FILE

/home/ubuntu/Lithops_config /root/config Lithops configuration file, containing the details of
your serverless execution. Inside the container,
this is set to the environmental variable
Lithops_CONFIG_FILE

You can run the Docker from the VM home directory simply by providing these paths as argu-
ments for the convenience script (note you also provide the container image name, e.g., tkchafin/varcall_client:0.2):

./serverless_genomics/variant_caller/varcall_client/varcall_docker_run.sh \
./serverless_genomics/ ./aws_config ./litops_config tkchafin/varcall_client:0.2

Page 95 of 98

https://Lithops-cloud.github.io/docs/source/configuration.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

H2020 825184 RIA
20/07/2022 CloudButton

That’s it! You now should notice your terminal prompt has changed to something like:

root@4d311b7ae8e8:~/serverless_genomics#

You can now run the pipeline.

Running the Docker container in a background shell

Although you can now run the pipeline, if you logout or exit your VM terminal, any ongoing pipeline
runs or running images will stop. To prevent this, you can run a background shell using the tool tmux:

start a tmux instance
should notice a green bar at bottom of terminal after running this
tmux

run the docker
./serverless_genomics/variant_caller/varcall_client/varcall_docker_run.sh \

./serverless_genomics/ ./aws_config ./litops_config tkchafin/varcall_client:0.2

As above, your terminal prompt should change to indicate you are “in” the container. To detach
from the tmux instance, just type CTRL+B, then D. Now, you can safely step away for a coffee and
return to have mapped and variant-called data!

To revisit your running tmux sessions, you can check for running instances using tmux ls:

ubuntu@ip-172-31-82-75:~$ tmux ls
0: 1 windows (created Wed Jun 29 17:18:28 2022)
ubuntu@ip-172-31-82-75:~$

Now, “re-attach” using tmux attach:

tmux attach -t 0

12.3.3 Building the container from scratch

If you have an issue with Docker (and can’t wait for help by posting over at the Gitlab Issues
page), or want to add some functionality to the Docker, you can find the complete Dockerfile at
serverless_genomics/variant_caller/varcall_client/Dockerfile. Inside, you will find direc-
tions for building the container.

To build the docker from scratch (and with docker installed on your local machine), you can type:

e.g. docker build -t tkchafin/varcall_client:0.2 varcall_client/
docker build -t <username>/varcall_client:<tag> varcall_client/

Note that this can take a while, especially if it is the first time you are building it (hence no cache
for docker to use).

12.4 Redis Installation

12.4.1 Virtual Machine configuration

Virtual Machine Image (OS)

Cloud providers offer a wide variety of images depending on the needs of the user. We recommend
the Ubuntu Server version.

Currently (June 2022) Lithops does not support python 3.10, as AWS lambda functions do not
support this version of python, so we recommend using Ubuntu Server 20.04 (which includes Python
3.8). Even so, it is possible to use Lithops with Python 3.10 which is included in Ubuntu Server 22.04,
but in this case the default runtime provided by Lithops cannot be used and a specific runtime that
includes Python 3.10 will have to be created using Docker.

Both operating systems are included in the AWS Free Tier.

Page 96 of 98

https://gitlab.bioss.ac.uk/lmarcello/serverless_genomics/-/issues
https://gitlab.bioss.ac.uk/lmarcello/serverless_genomics/-/issues

H2020 825184 RIA
20/07/2022 CloudButton

Instance type

The choice of the type of virtual machine to use depends on the requirements of your application and
your experiment. We recommend using the machines included in the AWS free tier, and if necessary,
use a more powerful machine (family, cpu, memory).

To start getting familiar with these virtual machines you can use the t2.micro machine from the
t2 family (general purpose), featuring 1 virtual CPU and 1 GiB of memory.

Login Key Pair

To access the virtual machine and control it from your personal computer, you need to generate a
unique pair of keys that will authenticate you when connecting to the machine via the ssh protocol.
This key pair can be generated using the AWS console, and you will need to carefully safeguard your
private key on your computer.

In order to connect to the Virtual Machine from your personal computer, you can use the com-
mand:

ssh -i private_key.pem ubuntu@<VirtualMachine_IP>

Network configuration

Network configuration is crucial to keep your virtual machine secure and functional. Below we will
detail the configuration used for the genomic use case.

We will allow all outgoing traffic and control all incoming traffic.
Outgoing traffic rules:

Type Protocol Port interval Destination

All the traffic All All 0.0.0.0/0 (All)

Incoming traffic rules:

Type Protocol Port interval Origin Description

SSH TCP 22 0.0.0.0/0 (All) SSH for admin Desktop
TCP customized TCP 6379 0.0.0.0/0 (All) Redis (protected with password)
TCP customized TCP 11222 0.0.0.0/0 (All) Infinispan (alternative to redis)
TCP customized TCP 2375 0.0.0.0/0 (All) Docker daemon
TCP customized TCP 2376 0.0.0.0/0 (All) Docker daemon encrypted

Storage configuration

In the event that disk storage is needed, the necessary gigabytes of storage can be allocated thanks
to a virtual disk (EBS in the case of AWS). We recommend using the minimum necessary disk, and
increasing its size depending on needs.

1 x * GiB gp2 root volume (Example for AWS EC2)

Static IP

If you want your virtual machine to have a fixed/static IP, you can create a new elastic IP (in the case
of AWS) and assign it to your recently created virtual machine.

12.4.2 Installation and Configuration of software used in the Virtual Machine

Clone this repository and start configuring your VM After cloning the repository move all its content
to your user directory

mv CloudButton-Redis-Installation/* /home/user_name/

Page 97 of 98

H2020 825184 RIA
20/07/2022 CloudButton

Execute redis_server_installation_1.sh

sudo ./redis_server_installation_1.sh redis_password

Execute redis_server_installation_2.sh

./redis_server_installation_2.sh redis_password

Fill out the configuration needed by redis_server_installation_2.sh

In the command prompt from /home/$(logname) you should invoke your favourite text editor, and
fill out the requested fields. For instance:

vi .Lithops/config

After that, you should configure the AWS client:

aws configure <AWS Access Key ID> <AWS Secret Access Key> <Default region name> json

12.4.3 Test correct installation

Close the terminal where you performed the installation, and open a new one, so you are using
the uptdated $PATH. Test Lithops with the following command, or use the snippets of the official
Lithops’ repository to implement your own program.

$ Lithops test

Page 98 of 98

https://github.com/Lithops-cloud/Lithops

	Executive summary
	Introduction
	Project Vision
	Serverless Analytics State of the Art
	Serverless orchestration systems
	Serverless container services

	Towards transparency
	DDC path to transparency
	Server-centric path to Transparency
	Serverless Python multiprocessing
	Limits of disaggregation and transparency
	Challenges ahead

	CloudButton Architecture
	Overall view
	Integration among the different components and contributions

	Software Releases
	Multi-cloud support

	Metabolomics use case
	Description of the use case
	METASPACE and the Big Data challenge
	METASPACE and CloudButton
	METASPACE-Lithops - The first step to Serverless
	Experiments
	Benchmarking datasets and metrics
	METASPACE-Lithops - The hybrid solution
	Benchmarking results, KPIs

	Genomics use case
	Experiments description
	Integration of the genomics pipeline with Faasm
	General cloud genomic toolkit components with Lithops
	FASTQ.GZ partitioner
	FASTQ partitioner using SRAtools
	FASTA partitioner

	Integration of Variant calling pipeline with Lithops
	Pipeline overview
	Variant Calling pipeline: key steps
	Cross-function communication with Redis
	Parallel reducer
	Results
	Code, documentation and datasets

	Transparent conversion of legacy code
	Architectural breakdown and proposed changes
	Adapting the OCaml framework with a Lithops Python wrapper
	Validation

	Conclusions

	Geospatial use case
	Geospatial use case: a general overview
	Preprocessing Workflow: LiDAR Partitioner for Lithops
	LiDAR file format
	Coordinates-based naive partitioning
	Density-based advanced partitioning
	Single-file partitioning performance evaluation
	Partitioning of a LiDAR dataset (multiple files)
	Conclusion

	Preprocessing Workflow: Geospatial Models Calculation
	Data granularity analysis
	Partitioning Comparative
	Conclusion

	Preprocessing Workflow: Sentinel2 Satellite Imaging Processing
	Sentinel2 satellite images
	Cloud-Optimized rasters for high-performance parallel processing
	A ServerMix approach with Lithops
	Conclusion

	Geospatial Workflow: NDVI Calculation
	Normalized Difference Vegetation Index
	Cloud-Optimized GeoTIFFs and the AWS Open Data Registry
	Sample execution: NDVI difference using Lithops
	Conclusion

	Geospatial Workflow: Water Consumption
	Workflow execution sample
	Conclusion

	Geospatial Workflow: Biomass Calculation
	Filtered Canopy Height Models
	Determine local maximums and watershed segmentation
	Training data and Random Forest classification
	SpeedUp & Parallelism

	Conclusions
	Annex 1: Questionnaire Template
	CloudButton Questionnaire

	Annex 2: Answers to the CloudButton Questionnaire
	Applicability
	Simplicity
	Productivity
	Scalability, Elasticity and Performance
	Cost
	Learning and documentation
	System Evaluation

	Annex 3: Serverless variant caller READMEs
	Installation requirements
	Install local dependencies (where the script is executed):
	Build and upload the runtime

	Running the variant caller
	Running the variant caller using Docker on AWS EC2
	Virtual Machine configuration
	Docker configuration in the VM
	Building the container from scratch

	Redis Installation
	Virtual Machine configuration
	Installation and Configuration of software used in the Virtual Machine
	Test correct installation

