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1 Executive summary

Serverless computing is an emerging paradigm that greatly simplifies the usage of cloud resources
and suits well to many tasks. Most notably, Function-as-a-Service (FaaS) enables programmers to
develop cloud applications as individual functions that can run and scale independently. Yet, due to
the disaggregation of storage and compute resources in FaaS, applications that require fine-grained
support for mutable state and synchronization, such as machine learning and scientific computing,
are hard to build.

The present document describes CRUCIAL, our initial prototype for stateful serverless compu-
tation. CRUCIAL allow to program highly-concurrent stateful applications atop serverless architec-
tures. Its programming model keeps the simplicity of FaaS and allows to port effortlessly multi-
threaded algorithms to this new environment. CRUCIAL is built upon the key insight that FaaS re-
sembles to concurrent programming at the scale of a data center. As a consequence, a distributed
shared memory layer is the right answer to the need for fine-grained state management and coordi-
nation in serverless.

Early validation results show that CRUCIAL is a promising approach for big data analytics with
serverless architectures. In particular, we have implemented two common machine learning algo-
rithms: k-means clustering and logistic regression. For both cases, CRUCIAL obtains superior or
comparable performance to an equivalent Spark cluster.
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2 Introduction

With the emergence of serverless computing, the cloud has found a paradigm that removes much of
the complexity of its usage by abstracting away the provisioning of compute resources. This fairly
new model was started by services such as Google BigQuery [1] and AWS Glue [2], and evolved
into Function-as-a-Service (FaaS) computing platforms, such as AWS Lambda, Azure Functions, and
Google’s Cloud Functions, to name a few. With these platforms, a user-defined function and its
dependencies are deployed to the cloud, where they are managed by the provider and executed
on-demand.

Current practice shows that the FaaS model works well for applications that require a small
amount of storage and memory due to the operational limits set by the cloud providers (see, for
instance, AWS Lambda [3]). However, there are more limitations. While functions can initiate out-
going network connections, they cannot directly communicate between each other, and have little
bandwidth compared to a regular virtual machine [4, 5]. This is because this model was originally
designed to execute event-driven, stateless functions in response to user actions or changes in the
storage tier (e.g., uploading a photo to Amazon S3 [6]). Despite these constraints, recent works have
shown how this model can be exploited to process and transform large amounts of data [7, 8, 9], en-
code videos [10], execute linear algebra tasks [11], and perform Monte Carlo simulations with large
amounts of parallelism [12].

The above research projects, such as PyWren [7, 8] and ExCamera [10], prove that FaaS platforms
can be programmed to perform a wide variety of embarrassingly parallel computations. Yet, these
tools face also fundamental challenges when used out-of-the-box for many popular tasks. Although
the list is too long to recount here, convincing cases of these ill-suited applications are machine learn-
ing (ML) algorithms. Just an imperative implementation of k-means [13] raises several issues: first,
the need to efficiently handle a globally-shared state at fine granularity (the cluster centroids); sec-
ond, the problem to globally synchronize cloud functions, so that the algorithm can correctly proceed
to the next iteration; and finally, the prerogative that the shared state survives system failures.

Current serverless systems do not address these issues effectively. First, due to the impossibility
of function-to-function communication, the prevalent practice for sharing state across functions is to
use remote storage. For instance, serverless frameworks, such as PyWren [7, 8] and numpywren [11],
use highly-scalable object storage services to transfer state between functions. Since object storage
is too slow to share short-lived intermediate state in serverless applications [14], some recent works
have opted to use faster storage solutions. For instance, this has been the path taken by Locus [9],
which proposes to combine fast, in-memory storage instances with slow storage to scale shuffling
operations in MapReduce. However, with all the shared state transiting through storage, one of
the major limitations of current serverless systems is the lack of support to handle mutable state
at a fine granularity (e.g., to efficiently aggregate small granules of updates). Such a concern has
been recognized in various works [4, 15], but this type of fast, enriched storage layer for serverless
computing is not available today in the cloud, leaving fine-grained state sharing as an open issue.

Similarly, FaaS platforms do not provide means to coordinate multiple functions. For instance,
there should be abstractions for a function to signal another when a condition is fulfilled, or for
multiple functions to synchronize, e.g., in order to guarantee data consistency, or just to ensure joint
progress to the next stage of computation [15]. Of course, such fine-grained coordination should be
also low-latency to not significantly slow down the application.

Contributions To overcome the aforementioned issues, we propose CRUCIAL, a system for the de-
velopment of stateful distributed applications with serverless architectures. To simplify the writing
of an application, CRUCIAL provides a thread abstraction that maps a thread to the invocation of a
serverless function. To support fine-grained state management and coordination, our system builds
a distributed shared object (DSO) layer on top of a low-latency in-memory data store. This layer
provides out-of-the-box strong consistency guarantees, simplifying the semantics of global state mu-
tation across serverless threads. Since global state is manipulated as remote objects, the interface for
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mutable state management becomes virtually unlimited, only constrained by the expressiveness of
the programming language (Java in our case). The result is that CRUCIAL can operate on small data
granules, making it very easy to develop applications that have fine-grained state sharing needs.
CRUCIAL also leverages this layer to implement fine-grained coordination. For applications that
require longer retention of in-memory state, CRUCIAL ensures data durability using state machine
replication (SMR), so that any acknowledged write can survive failures. This property is very com-
pelling for serverless computing platforms since the in-memory storage instances offered by cloud
providers, typically based on open-source projects such as Memcached or Redis, are not fault toler-
ant [15, 16].

Most importantly, CRUCIAL offers all of the above guarantees with almost no increase in the pro-
gramming complexity of the serverless model. With the help of a few annotations and constructs,
developers can run their single-machine, multi-threaded, stateful code in the cloud as serverless
functions. CRUCIAL’s programming constructs enable developers to enforce atomic operations on
shared state, as well as to finely synchronize functions at the application level, so that (imperative)
implementations of popular algorithms such as k-means can be effortlessly ported to serverless plat-
forms.

Preliminary evaluation results show that, for representative applications that require fine-grained
updates (e.g., k-means, logistic regression), CRUCIAL can rival, and even outperform, Spark running
on a dedicated cluster.

Outline The remaining of the paper is structured as follows: We present CRUCIAL, our prototype
for stateful serverless computation in Section 3. The softwares used to build this prototype are de-
tailed in Section 4. Section 5 review the state of the art and how it compares to CRUCIAL. Section
6 covers the exploratory work which was conducted during this first period of the CloudButton
project. We conclude in Section 7.

3 Current prototype

CRUCIAL is a framework to create and execute stateful serverless computation atop a Function-as-a-
Service (FaaS) architecture. This section presents the programming model of CRUCIAL, its internals
and preliminary performance results for machine learning (ML) applications.

3.1 Programming model

A CRUCIAL program is strongly similar to a regular multi-threaded, object-oriented Java one, besides
some additional annotations and constructs. Table 1 summarizes the key programming abstractions
available to developers that are explained hereafter.

Cloud threads To write a stateful application for serverless architectures, a programmer first builds
its logic as a regular multi-threaded, object-oriented Java program. Then, two refinements are nec-
essary to make it executable atop the FaaS model. First, each runnable object is associated with a
CloudThread. An instance of this class hides the execution details of the remote cloud function to the
developer. The second modification is to replace each mutable object shared between threads with
its CRUCIAL counterpart.

State handling CRUCIAL already includes a library of base shared objects to support mutable
shared data across cloud threads. This library consists of common objects such as integers, coun-
ters, maps, lists and arrays. By default, objects are wait-free and linearizable [17]. This means that each
method invocation terminates after a finite amount of steps (despite concurrent accesses), and that
concurrent method invocations behave as if they were executed by a single thread. CRUCIAL also
gives programmers the ability to craft their own custom shared objects by decorating them with the
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1 public class PiEstimator implements Runnable{
2 private final static long ITERATIONS = 100_000_000;
3 private Random rand = new Random();
4 private static crucial.AtomicLong counter = new crucial.AtomicLong(0);
5
6 public void run(){
7 long count = 0;
8 double x, y;
9 for (long i = 0L; i < ITERATIONS; i++) {

10 x = rand.nextDouble();
11 y = rand.nextDouble();
12 if (x * x + y * y <= 1.0) count++;
13 }
14 counter.addAndGet(count);
15 }
16 }
17
18 List<Thread> threads = new ArrayList<>(N_THREADS);
19 for (int i = 0; i < N_THREADS; i++) {
20 threads.add(new CloudThread(new PiEstimator()));
21 }
22 threads.forEach(Thread::start);
23 threads.forEach(Thread::join);
24 double output = 4.0 * counter.get() / (N_THREADS * ITERATIONS);

Listing 1: Monte Carlo simulation to approximate π.

@Shared annotation. Annotated objects become globally accessible by any thread. CRUCIAL refers to
an object with a key crafted from the field’s name of the encompassing object. The programmer can
override this definition by explicitly writing @Shared(key=k).

Table 1: Programming abstractions
ABSTRACTION DESCRIPTION

CloudThread Serverless functions are invoked like
threads.

Shared objects Linearizable (wait-free) distributed
objects. AtomicInt, AtomicLong,
AtomicBoolean, AtomicByteArray,
List, Map, . . .

Synchronization
objects

Shared objects providing primitives for
thread synchronization (e.g.,
CyclicBarrier, Semaphore, Future).

@Shared User-defined shared object. Methods are
run on the DSO servers, allowing
fine-grained updates and aggregates
(.add(), .update(), .merge(), . . . ).

Data
persistence

Long-lived shared objects are replicated.
Use @Shared(persistence=true) to
activate it.

Data Persistence Shared objects in CRUCIAL can be
either ephemeral or persistent. Unless otherwise stated,
shared objects are ephemeral and they only exist during
the application lifetime. Once the application finishes,
they are discarded. Ephemeral objects can be lost, e.g.,
in the event of a server failure in the DSO layer, since the
cost of making them fault-tolerant outweighs the bene-
fits of their short-term availability [14]. Nonetheless, it
is also possible to make them persistent with the anno-
tation @Shared(persistent=true). In such a case, the
annotated object outlives the application lifetime and is
only removed from storage by an explicit call.

Synchronization Current serverless frameworks sup-
port only uncoordinated embarrassingly parallel oper-
ations, or bulk synchronous parallelism (BSP) [15, 18].
To provide fine-grained coordination of cloud threads,
CRUCIAL offers a number of primitives such as cyclic bar-
riers and semaphores (see Table 1). These coordination
primitives are semantically equivalent to those in the standard java.util.concurrent library. They
allow a coherent and flexible model of concurrency for serverless functions that is, as of today, non-
existent.

3.1.1 Sample application

Listing 1 presents an application implemented with CRUCIAL. This simple program is a multi-
threaded Monte Carlo simulation that approximates the value of π. It draws a large number of
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Figure 1: Overall architecture of CRUCIAL. A client application would run a set of threads in FaaS
functions, and all the threads would have access to the same state (client included).

random points and computes how many fall in the circle enclosed by the unit square. The ratio of
points falling in the circle converges with the number of trials toward π/4 (line 24).

The application first defines a regular Runnable class that carries the estimation of π (lines 1-18).
To parallelize its execution, lines 22-23 run the fork-join pattern using a set of CloudThread instances.
The shared state of the application is a counter object (line 4). This counter maintains the total
number of points falling into the circle, which serves to approximate π. It is updated by the threads
concurrently using the addAndGet method (line 14).

3.2 Design

Figure 1 presents the overall architecture of CRUCIAL. In what follows, we detail its components and
describe the lifecycle of an application in our system. The system encompasses three main compo-
nents: 1) the DSO layer shared by all cloud thread instances; 2) the FaaS computing layer that runs
the cloud threads (i.e., CloudThread instances); and 3) the client application. A client application
differs from a regular JVM process on two aspects: threads are executed as serverless functions, and
they access shared data using the DSO layer. In addition, CRUCIAL may use object storage (such as
Amazon S3) to store the immutable input data of the application (not modeled in Figure 1).

3.2.1 The distributed object layer

In CRUCIAL, fine-grained updates to a data item are implemented as object methods. Internally, each
object in the distributed object layer (for short, DSO) is uniquely identified by a reference. Given
an object of type T, the reference to this object is (T, k), where k is either the field’s name of the
encompassing object or the value of the parameter key in the annotation @Shared(key=k). When
a cloud thread accesses an object, it uses its reference to invoke remotely the appropriate method.
CRUCIAL constructs the DSO layer using consistent hashing [19], similarly to Cassandra [20]. Each
storage node knows the full membership of the storage layer and thus the mapping from data to
node. The location of a shared object o is then determined by hashing the reference (T, k) of o. This
offers the following usual benefits: 1) no broadcast is necessary to locate an object; 2) disjoint-access
parallelism [21] can be exploited; and 3) service interruption is minimal in the event of server addition
and removal. The latter property is useful for persistent objects, as detailed next.
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Persistence Objects marked as persistent are replicated rf (replication factor) times in the DSO layer.
When a cloud thread accesses a persistent shared object, it contacts one of the server nodes via the
proxy object. The operation is forwarded to the actual replicas storing the object. Each replica exe-
cutes the incoming call, and one of them sends the result back to caller. Notice that for ephemeral,
non-persistent objects, rf is 1.

Consistency To help with the writing of stateful serverless applications, the DSO layer provides
strong consistency. In particular, and as described in Section 3.1, objects shared with CRUCIAL are
linearizable [17]. For persistent state, consistency across replicas is maintained with the help of state
machine replication (SMR) [22]. To implement SMR, CRUCIAL relies on a variation of the view syn-
chrony abstraction [23]. View synchrony also ensures consistency during membership changes. It
is well-known that if a strongly-consistent shared object is updated very frequently by multiple pro-
cesses, performance does not scale and CRUCIAL cannot help with it. Fortunately, we found that
for multiple stateful applications, it is possible to achieve high performance with strong consistency.
The study of other consistency models is planned in the upcoming Tasks T4.2 (M4-M34) and T4.3
(M9-M34).

Remote procedure CRUCIAL helps to alleviate perhaps one of the biggest downsides of FaaS plat-
forms: its data-shipping architecture [18]. As functions are not network-addressable and run separate
from data, applications are routinely left with no other choice but to “ship data to code”. Fortunately,
the DSO layer helps to resolve this design anti-pattern with minimal effort from the user side: it
suffices to implement arbitrary computations as object methods. This feature is extremely useful for
many applications that need to aggregate and combine small granules of data (e.g., machine learning
tasks). As object methods are remotely executed on the DSO servers, applications can save signifi-
cant communication resources. Without this property, each cloud function would need first to pull
all the intermediate data from the remote storage service (e.g., S3) and then aggregate it locally (i.e.,
AllReduce operation). This would entail a communication cost of N2 messages, where N is the num-
ber of functions. With CRUCIAL, however, this complexity reduces to O(N) messages. In particular,
we exploited this feature in k-means clustering to calculate the final centroids from their partial up-
dates.

3.2.2 Execution lifecycle

The execution lifecycle of a CRUCIAL application is similar to that of a multi-threaded Java applica-
tion. Every time a CloudThread is started, a standard Java thread (i.e., instance of java.lang.Thread)
is spawned in the client application with some extra logic. The basic role of this logic lies in calling
a generic serverless function to execute the Runnable code attached to the CloudThread. During the
execution of a cloud thread, each access to a shared object is mediated by a proxy. This proxy is
created when a constructor is encountered in the code, and either the newly created object belongs to
CRUCIAL’s library, or it is tagged @Shared.

The Java thread remains blocked until the call to the serverless function terminates. Such behavior
gives cloud threads the appearance of conventional threads; minimizing code changes and allowing
the use of the join() method in the application’s master thread to establish synchronization points
(e.g., fork/join pattern). It must be noted, however, that as cloud functions cannot be canceled or
paused, the analogy is not complete. If any failure occurs to the remote cloud function, the error is
propagated back to the client application for further processing.

3.2.3 Fault tolerance

Fault tolerance in CRUCIAL is based on the disaggregation of the compute and storage layers. On the
one hand, writes to the shared object layer can be made durable with the help of data replication. In
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such a case, CRUCIAL tolerates the joint failure of up to rf − 1 servers.1 On the other hand, CRUCIAL

offers the same fault-tolerance semantics in the compute layer as the underlying FaaS platform. In
AWS Lambda, this means that any failed cloud thread can be re-started and re-executed with the
exact same input. Thanks to the cloud thread abstraction, CRUCIAL allows full control over the
retry system. For instance, the user may configure how many retries are allowed and/or the time
between them. If retries are permitted, the programmer should ensure that the re-execution is sound
(e.g., it is idempotent). Fortunately, atomic writes in the DSO layer make this task easy to achieve.
Considering the k-means example (as well as in other iterative algorithms), it simply consists of
sharing an iteration counter. When a thread fails and re-starts, it fetches the iteration counter and
continues its execution from thereon.

3.3 Preliminary results

This section presents early results assessing that our approach is not only feasible but also desirable
for certain types of applications, e.g., machine learning (ML). We first validate the general design of
CRUCIAL with a series of micro-benchmarks. Next, we show that our system based on fine-grained
updates to shared mutable data outperforms Spark at comparable cost in two instances of ML prob-
lems.

Setup All our experiments are conducted in Amazon Web Services (AWS), using the us-east-1
region and a Virtual Private Cloud (VPC). Unless otherwise specified, we use r5.2xlarge EC2 in-
stances for CRUCIAL’s DSO nodes (usually, a single node is sufficient) and the maximum resource
settings for AWS Lambda. Currently, the deployment of DSO layer of CRUCIAL is not automatic
and has been done on a per-experiment basis. The provisioning of storage resources for serverless
computing remains an open issue [15, 4], with just a couple of works appearing very recently in this
area [14, 9].

3.3.1 Micro-benchmarks

For starters, we evaluate CRUCIAL’s performance across a range of micro-benchmarks.

Table 2: Average latency comparison 1KB
payload

PUT GET

S3 34, 868µs 23, 072µs
Redis 232µs 229µs
Infinispan 228µs 207µs
CRUCIAL 231µs 229µs
CRUCIAL (rf = 2) 512µs 505µs

Latency Table 2 compares the latency to access a 1KB
object sequentially in CRUCIAL, Redis, Infinispan and S3.
Each function performs 30k operations and we display
the average access latency. In this experiment, CRUCIAL

exhibits a performance similar to other in-memory sys-
tems. In particular, the system is an order of magnitude
faster than S3. This table also depicts the effect of data
replication on the system. When replicating an object
twice (rf = 2), the replicated state machine induces an
additional round-trip that doubles the latency perceived
at the client.

Throughput Figure 2a compares the performance of
CRUCIAL and Redis for both simple and complex operations. In this experiment, 200 cloud threads
access remotely 800 objects at random in closed loop. The experiment runs for 30s and we present
the average performance. The storage layer consists of a two-node cluster for both CRUCIAL (with
and without replication), and Redis (2 shards with no replicas).

The key observation in Figure 2a is that CRUCIAL is not affected by the complexity of the oper-
ation. For simple operations, Redis is 50% faster than CRUCIAL (without replication). On the other

1 Synchronization objects (see Table 1) are not replicated. This is not an important issue due to their ephemeral nature.
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(a) (b)

Figure 2: (a) Operations per second performed on CRUCIAL (with and without replication) and Redis.
The simple operation is a multiplication of a value. The complex operation is 10k multiplications
with that value. The experiment operates on a total of 800 different objects/keys concurrently. (b)
Scalability of a Monte Carlo simulation to approximate π. CRUCIAL reaches 8.4 billion random points
per second with 800 threads.

(a) (b)

Figure 3: Comparison of Spark and CRUCIAL implementations of Logistic Regression. (a) shows
the average completion time of the iteration phase (100 iterations). (b) shows a comparison of the
performance of both systems.

hand, for complex operations, the performance of CRUCIAL is 70% better than Redis when replica-
tion is activated. Without data replication, CRUCIAL is almost five times faster. This large gap comes
from the absence of disjoint-access parallelism in Redis. Indeed, calls to Lua scripts are executed
sequentially in Redis, while CRUCIAL invokes the object methods in parallel.

Parallelism Our first application using CRUCIAL is the Monte Carlo simulation presented in List-
ing 1. This base algorithm is embarrassingly parallel, relying only on a single shared object (a
counter). We run the simulation with 1 to 800 cloud threads and track the total number of points
computed by them each second. The results presented in Figure 2b show that our system scales
linearly and that it exhibits a 512x speedup with 800 threads.

3.3.2 Comparison with Spark

We compare CRUCIAL against Spark [24] using two machine learning algorithms: logistic regression
and k-means. Both algorithms are iterative and share a modest amount of state that requires per-
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iteration updates. They are a perfect fit to assess the efficiency of fine-grained updates in CRUCIAL

against a current state-of-the-art solution.

Setup For this comparison, we provide equivalent CPU resources to both competitors. In detail,
CRUCIAL experiments are run with 80 concurrent AWS Lambda functions and one storage node.
Each AWS Lambda function has 1792MB and 2048MB of memory for logistic regression and k-means,
respectively. These values are chosen to have the optimal performance at the lowest cost.2 Spark
experiments are run in an Amazon EMR cluster with 1 master node and 10 m5.2xlarge worker nodes
(Core nodes in EMR’s terminology), each having 8 cores. The Spark executors are configured to utilize
the maximum resources possible on each node of the cluster.

Dataset As input data, both applications use a 100GB synthetic dataset generated with spark-
perf [25]. The data comprises 55.6M elements. For logistic regression, each element is labeled and
contains 100 numeric features. For k-means, each element corresponds to a 100-dimensional point.
The dataset has been split into 80 equal-size partitions to ensure that all partitions are small enough
to fit into the function’s memory. Each partition has been stored as an independent file in Amazon
S3.

Figure 4: Average completion time of the
iteration phase (10 iterations) of the k-
means algorithm with varying number of
clusters.

Logistic regression We evaluate a CRUCIAL implemen-
tation of logistic regression against its equivalent counter-
part in Spark’s MLlib [26]: LogisticRegressionWithSGD.
A key difference between the two implementations is the
management of the shared state. At each iteration, Spark
broadcasts the current weight coefficients, computes, and
finally aggregates the sub-gradients in a MapReduce
phase. In CRUCIAL, the weight coefficients are shared
objects. At each iteration, a cloud thread retrieves the
current weights, computes the sub-gradients, updates the
shared objects, and synchronizes with the other threads.
Once all the partial results are uploaded to the DSO layer,
the weights are recomputed and the threads proceed to
the next iteration.

In Figure 3, we measure the running time of 100 itera-
tions of the algorithm and the logistic loss after each iter-
ation. Results show that the iterative phase is 18% faster
in CRUCIAL (62.3s) than Spark (75.9s), and thus the algo-
rithm converges faster3. This gain is explained by the fact that CRUCIAL aggregates and combines
sub-gradients in the dedicated shared object layer. On the contrary, each iteration in Spark induces a
reduce phase that is costly both in terms of communication and synchronization.

k-means We now compare an implementation of k-means using CRUCIAL to the one available in
Spark’s MLlib. For both algorithms, centroids are initially at random positions. Figure 4 shows the
completion time of 10 iterations of the clustering algorithm for different numbers of clusters. With
k = 25, CRUCIAL completes the 10 iterations 40% faster (20.4s) than Spark (34s). The time gap is less
noticeable with more clusters because the synchronization portion of each iteration is less represen-
tative as the number of clusters increases. That is, the iteration time becomes increasingly dominated

2 Starting with a configuration of 1792MB, an AWS Lambda function has the equivalent to 1 full vCPU (https://docs.
aws.amazon.com/lambda/latest/dg/resource-model.html). Also, with this assigned memory, the function uses a full
Elastic Network Interface (ENI) in the VPC.

3 For Spark, Figure 3 does not consider the cluster provisioning time, nor the time to load and parse the dataset from
S3.
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Table 3: Monetary costs of the experiments

Total
time (s)

Total
cost ($)

Iterations
cost ($)

k-means
(k = 25)

Spark 168 0.246 0.050
CRUCIAL 87 0.244 0.057

k-means
(k = 200)

Spark 330 0.484 0.288
CRUCIAL 234 0.657 0.492

Logistic
regression

Spark 192 0.282 0.111
CRUCIAL 122 0.302 0.154

by computation. As in the logistic regression experiment, CRUCIAL benefits from computing cen-
troids in the DSO layer, while Spark requires an expensive reduce phase at each iteration.

A note on costs Although one may argue that the programming simplicity of serverless computing
justifies its higher cost [7], running an application serverless should not significantly exceed the cost
of running it with other cloud appliances (e.g., VMs).

Table 3 details a cost comparison of Spark and CRUCIAL based on the above experiments. The
first two columns list the time and cost of the entire experiments, including the time of loading and
parsing the input data, but without considering provisioning times. The last column lists the costs
that can be attributed to the iterative phase of each algorithm. To compare fairly the two approaches,
we consider the pricing for on-demand instances and ignore AWS’s free tier.

With the current pricing policy of AWS [27], the cost per second of the CRUCIAL setup is always
higher than the Spark one: 0.25 and 0.28 cents per second for 1792MB and 2018MB function memory,
respectively, against 0.15 cents per second. Thus, when computation dominates the running time, as
in the k-means clustering with k = 200, the cost of using CRUCIAL is logically higher. This difference
is erased in experiments during which CRUCIAL is substantially faster than Spark (e.g., for k-means
clustering with k = 25).

To give a proper picture of this cost comparison, there are two additional remarks to make here.
First, the solution provided with CRUCIAL using 80 concurrent AWS Lambda functions employs a
larger aggregated bandwidth from S3 than the solution with Spark. This reduces the cost difference
between the two approaches. Secondly, CRUCIAL users only need to pay for the execution time of
their functions, rather than the time the cluster remains active. This includes the bootstrapping of
the cluster as well as the necessary trial-and-error processes found, for instance, in machine learning
training or hyper-parameter tuning [28].4

4 Software

Our current prototype for serverless stateful applications is split into four distinct softwares: CRUCIAL,
CRESON, the serverless executor service and INFINISPAN. CRUCIAL is built atop CRESON and the
serverless executor service. CRESON implements a layer of distributed shared objects atop the IN-
FINISPAN in-memory data grid.

Cloud threads are defined by implementing a Runnable and executed with the abstraction from
Table 1. CRUCIAL uses AWS Lambda as computation engine for the cloud threads. Lambda functions
are deployed with the help of the lambda-maven-plugin5 and invoked through the AWS Java SDK. To
gain control over the replay mechanism of the service, our prototype uses synchronous invocations

4 Provisioning the 11-machine EMR cluster takes 2 minutes (not billed) and bootstrapping requires an extra 4 minutes.
A CRUCIAL storage instance starts in 30 seconds.

5https://github.com/SeanRoy/lambda-maven-plugin
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(RequestResponse). When an AWS Lambda function is invoked, it receives in the payload the name
of the user-defined Runnable and a set of parameters to initialize it. We use the Java reflection API
to instantiate the classes and provide them the initialization values. Before executing the user code,
our generic function establishes the connection to the DSO layer. Since our prototype only accepts
Runnable, the return payload is empty unless an error occurs. In case of error, the system interprets
it and re-throws an exception.

Recently, we have started to modularize the FaaS code base into an independent serverless ex-
ecutor service. The service takes as input a Callable and executes it transparently either atop AWS
Lambda or Kubernetes. Such a behavior is identical to the ExecutorService in the JDK and will sim-
plify the portage of legacy application to serverless architectures.

The shared object (DSO) layer is written atop the Infinispan in-memory data grid [29] as a partial
rewrite of the CRESON project [30]. The code of the client and the server of this layer weigh 2.5k
and 9.2k SLOC, respectively. The prototype client of CRUCIAL includes a small library of shared
objects and the proxies to access them. To wave proxies in the code of the client application and
the functions, both are compiled with the help of AspectJ [31]. In the case of user-supplied shared
objects, the aspects are applied to annotated instance fields (see Section 3.1). Such objects must be
serializable and contain an empty constructor for marshalling purposes. For the servers to be able to
manage user objects, a .jar package must be uploaded somewhere accessible by them (e.g., S3).

This package can be loaded dynamically, without having to restart the servers. The server is
implemented using the interceptors API of Infinispan6, which also allows the SMR logic. The ap-
proach follows the visitor pattern as commonly found in storage systems. Synchronization objects
(e.g., barriers, futures, semaphores) follow the structure of their Java counterparts. These objects uti-
lize Java’s synchronized capabilities so that clients block on a remote connection, while the method
execution on the server uses the combination of wait()/notify(). For instance, the barrier adopts
the mechanism of a cyclic barrier, with an internal counter and a generation system.

4.1 Crucial

(Documentation) https://github.com/danielBCN/crucial/README.md

(Code) https://github.com/danielBCN/crucial7

4.2 Creson

(Documentation) https://github.com/otrack/creson

(Code) https://github.com/otrack/creson/README.md

4.3 Serverless Executor Service

(Documentation) https://github.com/otrack/serverless-executor-service

(Code) https://github.com/otrack/serverless-executor-service/README.md

4.4 Infinispan

(Documentation) https://infinispan.org/documentation

(Code) https://github.com/infinispan
6 The interceptors API enables the execution of custom code in-between Infinispan’s processing of data store operations.
7 The CRUCIAL prototype is described in a scientific paper which was submitted to a conference. This repository is

private due to double-blind review process of the conference.
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5 State of the Art

5.1 Alternative programming models

Large datacenters hosting hundreds of thousands of commodity servers form the backbone of mod-
ern computing systems. Message passing is the native model for such infrastructures. This makes
actor-based frameworks such as Akka [32] and microservices architectures popular for constructing
distributed programs. In the high-performance computing world, MPI is a widely-employed pro-
gramming interface [33]. MPI provides extensive messaging mechanisms such as unicast and broad-
cast as well as support for creating and managing remote processes in a distributed environment.
The message passing model gives flexibility to the programmer by explicitly managing communica-
tion and state synchronization. On the other hand, it generally remains difficult to program with it
and there is no incremental path to parallelize applications following this paradigm.

Distributed shared memory (DSM) systems such as Munin [34] and TreadMarks [35] implement
the convenient shared-memory programming model over a cluster of machines. The programmer
writes parallel programs with threads, synchronizing them with library routines that manipulates
locks, barriers, and condition variables. Access to the shared memory is at the page level and fully
transparent. This requires to map statically each shared variable to a specific shared segment at
compile time. Furthermore, the approach ships data to code and thus needs complex protocols to
arbitrate data races and false sharing problems.

OpenMP is an industry standard api for shared-memory programming on a single machine [36].
It allows the user to parllelize portion of her code using fork/join and doacross idioms. Most efforts
to support OpenMP programs over a cluster of machines [37, 38] are based on software distributead
shared memory. As a consequence, the resulting implementations suffer from the same limitations
as DSM systems.

MapReduce [39] pioneered a model of cluster computing in which data-parallel computations
are executed on clusters of unreliable machines by systems that automatically provide locality-aware
scheduling, fault tolerance, and load balancing. In this programming model, the user creates acyclic
data flow graphs to pass input data through a set of operators. This allows the underlying system to
manage scheduling and to react to faults without user intervention. While this data flow program-
ming model is useful for a large class of applications, there are applications that cannot be expressed
efficiently as acyclic data flows. This includes two use cases for which MapReduce is deficient: itera-
tive jobs and interactive analytics [24].

Spark focuses on distributed applications that reuse a working set of data across multiple parallel
operations. This includes many iterative machine learning algorithms [26], as well as interactive data
analysis tools. Spark supports these applications while retaining the scalability and fault tolerance
of MapReduce. To achieve these goals, Spark introduces an abstraction called resilient distributed
datasets (RDDs). An RDD is a read-only collection of objects partitioned across a set of machines that
can be rebuilt if a partition is lost [40].

5.2 Serverless architectures

Despite the increasing maturity and adoption of cloud technologies, programming a cloud appli-
cation remains a complex error-prone task. In particular, managing the application state requires
particular care to tolerate failures, scale to large amount of operations per second, and elastically
adapt resources to demand. Besides that, it is desirable for application developers to have access to
high-level interfaces, and manipulate complex data structures, while benefiting from the simplicity
and safety associated with strong consistency guarantees.

Serverless computing is an emerging paradigm that pushes the principles of Platform-as-a-Service
one step further. In this paradigm, the runtime is not started by the user, but already running at the
service provider itself. The user ships only to the provider the functions to be executed. These func-
tions are loaded in the platform and executed on-demand. A functions may access remote services
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such as web services, storage backends or other serverless functions. This allows to solve complex
tasks by decomposing them, as in classical service-oriented architectures. However, contrary to this
last approach, programming time is reduced to the bare minimal: only the code that executes the
actual logic of the application is required.

Typically, serveless computing platforms support multiple programming languages. For some
target language, the platform requires to express user functions following a simple signature, e.g.,
void execute(Stream<String> input, Context context), where context is an object that materi-
alizes the invocation context of the call. Once a serveless code is stored in the platform, it can be
loaded dynamically on-demand. If the server is hot then this code is already in memory, reducing
invocation time. To trigger the execution, the programmer may launch it by hand, or define some
condition (e.g., a trigger at the storage level).

With the emergence of serverless computing, the cloud has found a paradigm that removes much
of the complexity of its usage by abstracting away the provisioning of compute resources. This fairly
new model was started by services such as Google BigQuery [1] and AWS Glue [2], and evolved
into Function-as-a-Service (FaaS) computing platforms, such as AWS Lambda, Azure Functions, and
Google’s Cloud Functions, to name a few. With these platforms, a user-defined function and its
dependencies are deployed to the cloud, where they are managed by the provider and executed
on-demand.

Current practice shows that the FaaS model works well for applications that require a small
amount of storage and memory due to the operational limits set by the cloud providers (see, for
instance, AWS Lambda [3]). However, there are more limitations. While functions can initiate out-
going network connections, they cannot directly communicate between each other, and have little
bandwidth compared to a regular virtual machine [4, 5]. This is because this model was originally
designed to execute event-driven, stateless functions in response to user actions or changes in the
storage tier (e.g., uploading a photo to Amazon S3 [6]). Despite these constraints, recent works have
shown how this model can be exploited to process and transform large amounts of data [7, 8, 9], en-
code videos [10], execute linear algebra tasks [11], and perform Monte Carlo simulations with large
amounts of parallelism [12].

5.3 Dealing with state

All the major cloud providers offer a Function-as-a-Service platform (e.g., AWS Lambda, Azure Func-
tions or Google Cloud Functions). These services have proven to be of little value to build stateful
applications due to the lack of built-in support for mutable shared state and synchronization [15, 18].
As a consequence, serverless frameworks have had no other choice than developing their own mech-
anisms for this purpose.

A number of research works [7, 8, 11] opt to write shared data to slow, highly-scalable object
storage. To hide high latency, these works have designed their systems to perform coarse-grained
accesses. For instance, PyWren [7] replaces Amazon S3 with a Redis [41] cluster to sort 1TB. Never-
theless, the authors do not generalize this approach to other types of applications. A recent paper [9]
takes this idea one step further by combining Redis with slow storage to scale the shuffling phase in
MapReduce. Pocket [14] focuses on the scalability and the cost-efficiency to access ephemeral data for
serverless analytics. Compared with CRUCIAL, none of the above works addresses the requirements
for fast, fine-grained updates to shared mutable state necessary in stateful applications.

The problem of synchronizing cloud functions has followed a similar course. Current serverless
systems do not provide means for fine-grained coordination of multiple functions [15, 18], but only
via largely (uncoordinated) embarrassing parallelism [7, 8, 11, 10]. All these works mainly differ
by the way they synchronize the map operator. While some of them use storage [7, 8, 11], other
systems, such as ExCamera [10], have implemented its own notification systems using a VM-based
rendezvous server. CRUCIAL, however, provides a broad suite of synchronization primitives (e.g.,
cyclic barriers, semaphores, futures) that permit fine-grained coordination, thereby going beyond
the state of the art in that domain.
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FaaS orchestration services may also be used for coordination purposes in stateful serverless ap-
plications. Services like AWS Step Functions, Azure Durable Functions, and OpenWhisk Composer
can orchestrate function workflows using state machines. But as underlined recently [42], they are
not designed for highly-parallel concurrent tasks and they show considerable overheads in that case.

Mutable shared state can be abstracted at different levels. Since CRUCIAL targets the simplicity
of serverless computing for general stateful applications, we chose to represent state as objects. This
simplifies the programming of fine-grained updates and/or aggregates by packing them in appro-
priate methods. To meet the latency and throughput requirements imposed by FaaS computing, we
built the distributed shared object layer on top of the Infinispan in-memory data store [29]. Other
systems available in the cloud, such as Memcached [43] or Redis [41], might be an alternative. Redis
provides some data types (e.g., strings and lists) and support for server-side Lua scripting. Un-
fortunately, Memcached abstractions are too low-level for our context and building a distributed
object-oriented model with strong consistency and data replication on top of Redis is far from being
trivial. Furthermore, while CRUCIAL hides the latency of complex operations and offers parallelism,
the single-threaded model of Redis for executing Lua scripts is not efficient in this context.

6 Exploratory work

Exploratory work is an important part of a European-funded RIA because it investigates and devel-
ops ideas that advance the state of the art both in research and industry. This section explains the
exploratory work that has been conducted during the first six months. It also provides indications
on how to decide whether this work will make it into a future version of CRUCIAL.

The exploratory work prepares Tasks T4.2 (M4-M34), T4.3 (M9-34) and T4.4 (M7-34), as well as
the upcoming Deliverables D4.2 and D4.3 in CloudButton. This work is risky in the sense that not
all of it will become part of the reference architecture. Such risk-taking is a necessary part of all
successful research. Success of this work is to be measured not on how much of the work becomes
part of the reference architecture, but on whether sufficiently innovative exploration is done and on
whether the reference architecture itself is sufficiently innovative.

6.1 T4.2 - Degradable objects

In a distributed system, data is replicated for availability and to boost performance (typically, with
more read replicas). When replicated data is mutable, it is necessary to maintain consistency with
the help of a concurrency control mechanism. Due to the CAP and FLP impossibility results [44,
45], orchestrating data replicas is notably difficult and moreover subject to conflicting requirements.
On the one hand, strong consistency maintains the application’s sequential invariants and is well
understood. On the other hand, performance and scalability suggest to use of a weaker consistency
criterion, yet this requires considerable programming skills. A key challenge is thus to find a good
balance between the programming model of the target distributed application, and its deployment
constraints and performance requirements.

To reconcile programming model and data consistency, Task T4.2 of the CloudButton project in-
vestigates the notion of degradable object. A degradable object is a mutable shared data type whose
behavior varies to match the requirements of an application. More precisely, a degradable object is a
hierarchy of object types all having the same signature, but with varying pre- and post-conditions for
their operations and that abide by different consistency criteria. Each level of this hierarchy is called
a degradation level. The key principle is that the degradation level L+1 requires less synchrony to
implement than the level L. Thus, it is more efficient and more scalable, but also less convenient to
program with.

The programmer specifies the degradation level to use according both to the invariants of the
application and its performance requirements. Finding the appropriate level for a given application
pattern is an iterative process. At first glance, a programmer may use strong consistency, then later
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refines her choices based on the fact that some interleavings and/or inconsistencies are acceptable.
Our key insight here is that this iterative process will offer a principled and pedagogical approach to
understand and use (weak to strong) data consistency in distributed applications.

A preliminary work in Task T4.2 has been conducted on the definition and implementations of
degradable objects. Our effort have been conducted so far on three fronts.

• First, we are collaborating with the H2020 LightKone project [46] on introducing a new com-
munication primitive in AntidoteDB [47]. AntidoteDB is a distributed database of conflict-free
replicated data types (CRDTs). In the traditional CRDT approach, operations that are mutating
a replica are executed in the background, outside the critical path. Their side effect (aka., the
effector [48]) is then propagated eventually to all the replicas, for instance an epidemic protocol.
Our new primitive will maintain this behavior, but will also offer better properties if needed
(e.g., on the delivery order of effectors). The end goal is to allow some operations to execute
under stricter consistency conditions than strong eventual consistency, the default criteria of
CRDTs [49].

• Our second effort is on the specification and definition of degradable objects. We investigate the
link between the specification of a sequential data type and the need for process synchroniza-
tion. Typically, process synchronization is measured by the consensus power of a given data
type. The consensus power is the largest number of processes that are able to solve consensus
with this data type and registers. Starting from base shared objects, we are investigating how
consistency degradation reduces the consensus power.

• The consensus power is formulated with linearizable objects, that is, in the classical shared
memory model. As a consequence, this hierarchy does not fully capture the need for synchro-
nization in a distributed message-passing system. To close this gap, we investigate alternative
definitions to characterize process synchronization. In particular, our investigation covers the
k-set agreement hierarchy and the link between failure detectors and quorums of data replicas
[50].

6.2 T4.3 - Just-right synchronization

The classical way of maintaining shared objects strongly consistent is state-machine replication (SMR)
[22]. In SMR, an object is defined by a deterministic state machine, and each replica maintains its own
local copy of the machine. An SMR protocol coordinates the execution of commands at the replica,
ensuring that they stay in sync. This requires to execute a sequence of consensus instances each
agreeing on the next state-machine command. The resulting system is linearizable, providing an
illusion that each command executes atomically throughout the system.

It is well-known that the above classical SMR scheme limits scalability. However, strong consis-
tency is necessary to help transitioning legacy code from shared-memory to serverless architecture.
Moreover, as underlined in Section 6.1, its semantics is well-understood by everyday programmers.
To sidestep the performance problem of strong consistency, we have performed an exploratory work
on (i) improving the scalability of SMR with leaderless consensus, and (ii) designing an efficient
atomic multicast protocol to deal with partial replication. These two investigations are further de-
tailed below.

6.2.1 Leaderless consensus

To date, SMR protocols do not scale, that is when more replicas are added to the system, the per-
formance of the replicated service degrades. This situation results from the conjunction of several
pitfalls:

• First of all, a large spectrum of protocols, e.g., Paxos [51], Raft [52] or Zab [53], funnel com-
mands through a leader replica. This approach increases latency for clients far away from the
leader and decreases availability because if the leader fails, the system halts to elect a new one.
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To mitigate these drawbacks, leaderless approaches [54, 55, 56] allow each replica to contact a
quorum of its peers to execute a command.

• A second concern is that many standard solutions rely on large quorums to make progress. For
instance, in a system of n replicas, Fast Paxos [57] accesses at least 2n

3 replicas, EPaxos [55] 3n
4 ,

and Mencius [54] contacts them all. Large quorums harms system reliability and scalability
because more replicas have to participate to the ordering of each command.

• A last concern is the communication delay to execute a command. To minimize service la-
tency SMR protocols should leverage non-conflicting commands, that is commands which are
not concurrent to any other non-commuting command. These commands are frequent in dis-
tributed applications [58, 59] and can execute in a single round-trip [60].

Refining the above observations, we have introduced a set of desirable requirements for SMR: Reli-
ability, Optimal Latency and Leaderlessness, We have shown that attaining all the ROLL properties
is subject to a trade-off between fault-tolerance and scalability. More specifically, in a system of n
processes, the ROLL theorem states that every leaderless SMR protocol that tolerates f failures must
contact at least (n− (n− f )

2 ) processes to execute a command in a single round-trip.
Simultaneous failures and/or asynchrony periods are however a rare event. Leveraging this fact,

we have proposed a novel SMR protocol which, based on the ROLL theorem, is optimal. In particular,
this new leaderless SMR protocol offers two distinguishable unique features.

• First, it executes a command by contacting the closest
⌊ n

2

⌋
+ f processes. For small values of f ,

this implies that the protocol scales.
• The protocol applies commands using a fast path that completes after one round trip, or a

slow path, which completes after two round trips. We introduce a new condition that allows
commands to take the fast path even in the presence of conflicts. In particular, when f = 1, the
protocol always takes the fast path.

We have experimentally compared our protocol against Paxos [51], EPaxos [55] and Mencius [54] on
Google Cloud Platform. Our preliminary results show that our approach consistently outperforms
these protocols. In particular, the protocol scales when f is small in the sense that adding more nodes
close to the clients improves latency.

6.2.2 Atomic multicast

Atomic multicast is a communications primitive that allows a group of processes to receive messages
in an acyclic delivery order. This primitive is a useful building block for distributed storage systems
that enforce strong consistency properties. As an example, atomic multicast is used in Infinispan
to implement distributed transactions. The main difference with atomic broadcast, which serves a
similar purpose, is that a message can be addressed to a subset of the processes. To be scalable,
atomic multicast protocols must be genuine, that is only the destination group of a message should
be involved in its ordering.

The standard fault-tolerant genuine solution layers Skeen’s multicast protocol on top of Paxos to
replicate each destination group. Recent improvements decrease the latency of this standard solution
by adding a parallel speculative execution path. Under normal operation, the standard protocol can
deliver multicast message in 6 communication delays and such an optimized version in 4 communi-
cation delays.

Standard protocols employ the Paxos consensus protocol as a blackbox. Departing from this tra-
ditional way of guaranteeing fault-tolerance, we propose a new solution that weaves Paxos together
with Skeen’s multicast. The resulting multicast protocol embeds its own replication logic, enabling
message ordering and delivery in 3 communication delays under normal operation.

Our protocol offers better theoretical performance. We have experimentally assessed that such
characteristics pay-off in practice. We implemented our protocol in the same framework as Skeen’s
and its optimized variation and conducted a comparative performance analysis of the three proto-
cols. Our protocol offer better latency than prior works (up to 2x faster than the optimized Skeen
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variation). It also sustains a much higher number of concurrent client requests, thanks to its lower
message complexity.

6.3 T4.4 - In-memory data storage

6.3.1 Ahead-of-time compilation

One of the concerns of using Java in high-density environments is the overhead of the Java Virtual
Machine (JVM) both in terms of memory usage as well as in startup and warming-up time. Most
of the blame for this doesn’t actually lie in the JVM itself, which is still one of the best available
optimizing virtual machines, but in the typical dynamic approach of many development frameworks
which rely on runtime class reflection, annotation scanning and bytecode enhancements. However,
the overhead of the JVM can still be drastically reduced by using ahead-of-time compilation (AOT),
where Java source code can be directly compiled to machine code. Oracle has recently released the
GraalVM project, which, among other things, delivers a "native-image" tool which generates a native
binary from a Java application which does not require a JVM at runtime. This kind of native binary
is ideal for applications which need very fast startup time with low memory overhead, which is
typical in short-lived execution scenarios like FaaS. Real-world examples have demonstrated a 100-
fold speedup in startup time for a microservice-style application (from 9 seconds to less than 1/10 of
a second) and a 10-fold reduction in RSS (Resident Set Size) memory usage (from 250MB to 25MB).
Because the native-image tool imposes some limitations on the kind of code that can be compiled
and executed, traditional Java applications and libraries need to be altered. The Infinispan team
has already implement the first set of changes to allow the Hot Rod client to be compiled ahead-of-
time and more work is happening to be enable the same to be done with the embedded and server
variants.

6.3.2 Support for non-volatile memory

Although processing occurs in main memory, big data stores such as Infinispan maintain the author-
itative version of data on secondary storage (typically, SSD and disk). The existence of two versions
of the data, one on-disk and another in-memory, poses several core problems. First, the slow access
time of secondary storage represents a serious performance bottleneck that necessitates to persist
data asynchronously at the expend of durability. Furthermore, starting and warming up data store,
e.g., to recover after a failure, takes a very long time. A striking example is the September 2010 Face-
book outage [61], in which the whole system was unavailable for 2.5 hours due to recovery. Moreover,
the two representations of data have to be mutually consistent. This requires complex mechanisms
to sustain the massively parallel access to the store, while minimizing the impact of a failure. At
run-time, these mechanisms translate into a high overhead. For instance, some recent investigations
show that Apache Spark is up to 6× faster without data persistence [62].

A key technology [63] that has the potential to remove the dual representation and greatly im-
prove performance is the non-volatile byte-addressable memory (NVRAM). NVRAM is an emerging
technology that combines the best features of traditional RAM and persistent storage. It is persistent
upon power loss, provides fast and fine-granular access to data, and promises low latency (orders of
magnitude faster than flash memory). Using NVRAM, the data may thus directly persist in mem-
ory. This removes the requirement of a secondary storage medium for persistence and allows the
developer to focus on in-memory performance.

However, leveraging NVRAM requires to tackle several core challenges. A first challenge comes
from the that algorithms managing the in-memory representation of data are not ready for persistent
memory. A base example is an atomic map that serves key-value store operations, backed by several
log-structured merge-trees for indexing, as found in many storage systems. In a nutshell, these algo-
rithms are not designed to recover a consistent state after a failure. Upon recovery, threads may have
to deal with a mix of data that was stored in persistent memory, while other parts of their state was
not (e.g., processor cache, memory controller). Therefore, the state of the system may not be identical
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before and after the failure. A related concern is that many key data structures in a big data store
support concurrent accesses. Offering data persistent should not come at the price of performance
by removing this parallelism A third challenge comes from the applicability of the approach as a
whole.

In the context of Task T4.4, we have started to work on the introduction of NVRAM in Java-based
big data stores. This work is currently at an early exploration stage, and we are investigating new
approaches to offer data persistence in Java.
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7 Conclusion

This document presents CRUCIAL, our initial prototype for stateful serverless computation. CRUCIAL

allow to program highly-concurrent stateful applications on top of a Function-as-a-Service platform.
It is built using an efficient disaggregated in-memory data store, and it can be used to construct
demanding serverless applications that require fine-grained support for mutable state and synchro-
nization. Early results show that CRUCIAL achieves superior or comparable performance to Spark
for two common machine learning algorithms. In both cases, less than 3% of our code differs from a
conventional solution using plain old Java objects.
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