
HORIZON 2020 FRAMEWORK PROGRAMME

CloudButton
(grant agreement No 825184)

Serverless Data Analytics Platform

D4.3 Full implementation of the BLOSSOM middleware

Due date of deliverable: 15-12-2021
Actual submission date: 01-07-2022

Start date of project: 01-01-2019 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v2.0

Number of pages 56

WP/Task related to this document WP4 / All tasks

WP/Task responsible IMT

Leader Pierre Sutra (IMT)

Technical Manager Tristan Tarrant (RHAT)

Quality Manager Marc Sánchez (URV)

Author(s) Daniel Barcelona-Pons (URV), Anatole Lefort (IMT), Pierre
Sutra (IMT), Gerard París Aixalà (URV), Pedro García
(URV), Marc Sanchez (URV), Tristan Tarrant (RHAT)

Partner(s) Contributing IMT, URV, RHAT

Document ID CloudButton_D4.3_Public.pdf

Abstract This document describes in detail CRUCIAL, a framework
to program efficient stateful serverless applications.

Keywords serverless, FaaS, distributed storage, big data, data analyt-
ics, machine learning

History of changes

Version Date Author Summary of changes

0.1 13-12-2021 Pierre Sutra Initial version

0.2 10-05-2022 Pierre Sutra §4 added

0.3 15-05-2022 Pierre Sutra §5.1 added

0.4 20-05-2022 Pierre Sutra Modifications to §4

0.5 01-06-2022 Pierre Sutra Some more edits

0.6 06-06-2022 Tristan Tarrant Modifications to §5

1.0 27-06-2022 Pierre Sutra First full draft

1.1 28-06-2022 Daniel Barcelona Review §3

2.0 05-07-2022 Pierre Sutra Final version

H2020 825184 RIA
XX/XX/2022 CloudButton

Table of Contents

1 Executive summary 1

2 Introduction 2

3 Stateful serverless programming with CRUCIAL 4
3.1 Using CRUCIAL . 4

3.1.1 Programming model . 4
3.1.2 Sample applications . 6
3.1.3 Portage to serverless . 7

3.2 Design . 8
3.2.1 The distributed shared objects layer . 9
3.2.2 Fast aggregates through remote procedure call 10
3.2.3 Lifecycle of an application . 10
3.2.4 Fault tolerance . 11

3.3 Implementation . 11
3.4 Evaluation . 12

3.4.1 Micro-benchmarks . 13
3.4.2 Fine-grained state management . 14
3.4.3 Fine-grained synchronization . 17
3.4.4 Smile library . 20
3.4.5 Usability of CRUCIAL . 22

4 The Serverless Shell 24
4.1 Programming with sshell . 24
4.2 System design . 25

4.2.1 Overview . 25
4.2.2 Serverless platform . 25
4.2.3 Executor . 26
4.2.4 Distributed storage . 26
4.2.5 Inter-process communication . 26
4.2.6 Implementation . 27

4.3 Evaluation . 28
4.3.1 Experimental setup . 28
4.3.2 Preliminaries . 28
4.3.3 Micro-benchmarks . 29
4.3.4 Large-scale application . 30

5 Extensions 32
5.1 Support for non-volatile memory . 32

5.1.1 Programming with J-NVM . 33
5.1.2 Evaluation . 34

5.2 Ahead-of-time compilation . 36
5.3 Anchored keys . 37
5.4 Kubernetes operator . 37

6 Exploratory work 38
6.1 T4.2 - Degradable objects . 38
6.2 T4.3 - Just-right synchronization . 39

6.2.1 Leaderless consensus . 40
6.2.2 Atomic multicast . 40

i

H2020 825184 RIA
XX/XX/2022 CloudButton

7 State of the Art 41
7.1 Runtimes . 41
7.2 Programming frameworks . 42
7.3 Storage . 43
7.4 Distributed stateful computation . 43

8 Conclusion 45

ii

H2020 825184 RIA
XX/XX/2022 CloudButton

1 Executive summary

Serverless computing greatly simplifies the use of cloud resources. In particular, Function-as-a-
Service (FaaS) enables programmers to develop applications as individual functions that can run
and scale independently. The CloudButton project aims at leveraging this new infrastructure to bring
closer to the end user the vast amount of data and computing power available in the cloud.

In this document, we present CRUCIAL, a system to program and execute efficient applications
that target serverless platforms.1 CRUCIAL is built upon the key insight that serverless computing re-
sembles to concurrent programming at the scale of the cloud. As a consequence, a distributed shared
memory layer is the right answer to the need for fine-grained state management and coordination in
serverless.

The programming model of CRUCIAL keeps the simplicity of serverless computing and allows to
write effortlessly parallel code for this new environment. Our system is structured into a compute
and a storage tier, while providing a convenient user-facing library to the programmer. The compute
tier runs atop a FaaS platform, while storage consists of an efficient in-memory distributed storage
layer.

We validate CRUCIAL with the help of micro-benchmarks and various data analytics applications.
To update shared data and synchronize cloud functions, CRUCIAL has better performance than alter-
native solutions. We show that it also simplifies the writing of parallel tasks (e.g., Monte Carlo) and
ML algorithms (such as k-means clustering and logistic regression). Compared to Apache Spark, it
obtains close or better performance at similar cost. We also use CRUCIAL to port a state-of-the-art
multi-threaded ML library to serverless, as well as *NIX scripts. CRUCIAL brings elasticity and on-
demand capabilities to these traditional single-machine programs. The performance of the serverless
versions of these two programs are on par with the one offered by a dedicated cluster of high-end
servers. A key feature of CRUCIAL is that it also allows to port programs to serverless in a few lines
of code. All the above applications were ported while modifying less than 4% of the original code
base. This document describes in full length the CRUCIAL prototype, its programming API and the
underlying distributed storage and compute tiers.

Comparison with D4.2 This deliverable is an iteration over the previous deliverable of this work
package (WP4). It contains three key novelties: (i) The serverless shell (sshell) is a new tool to
execute *NIX commands remotely in the function-as-a-service platform. sshell permits to reuse
an existing code base while benefiting from the massive power of serverless and paying only for
the resources used. (ii) In this document, we also introduce J-NVM, a fully-fledged support for
non-volatile persistent memory in the Java language. J-NVM allows serverless functions to quickly
access persisted data in the distributed shared memory layer of CRUCIAL. (iii) The last novelty is a
new Kubernetes operator for the shared memory layer. This operator simplifies data access within a
unified modern container-based ecosystem to serverless (and traditional) distributed applications.

1In the project proposal, CRUCIAL is codenamed BLOSSOM.

Page 1 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

2 Introduction

Context Serverless computing is a paradigm that removes much of the cloud’s usage complexity
by abstracting away the provisioning of compute resources. This fairly new model was started by
services such as Google BigQuery [117] and AWS Glue [13], and evolved into Function-as-a-Service
(FaaS) computing platforms, such as AWS Lambda and Google Cloud Functions. In these services,
a user-defined function and its dependencies are deployed to the cloud, where they are managed by
the provider and executed on demand at scale.

Current practice shows that the FaaS model works well for applications that require a small
amount of storage and memory due to the operational limits set by the cloud providers (see, for
instance, AWS Lambda [10]). However, there are more limitations. While functions can initiate out-
going network connections, they cannot directly communicate between each other, and have little
bandwidth compared to a regular virtual machine [27, 155]. This is because this model was origi-
nally designed to execute event-driven, stateless functions in response to user actions or changes in
the storage tier (e.g., uploading a file to Amazon S3 [9]). Despite these constraints, recent works have
shown how this model can be exploited to process and transform large amounts of data [74, 124, 130],
encode videos [48], execute linear algebra tasks [133], and perform Monte Carlo simulations with
large amounts of parallelism [70].

Problematic The above works, such as PyWren [74, 130] and ExCamera [48], prove that FaaS plat-
forms can be programmed to perform a wide variety of embarrassingly parallel computations. Yet,
these tools face also fundamental challenges when used out-of-the-box for many popular tasks. Al-
though the list is too long to recount here, convincing cases of these ill-suited applications are dis-
tributed stateful computations such as machine learning (ML) algorithms. Just an imperative imple-
mentation of k-means [96] raises several issues: first, the need to efficiently handle a globally-shared
state at fine granularity (the cluster centroids); second, the problem to globally synchronize cloud
functions, so that the algorithm can correctly proceed to the next iteration; and finally, the preroga-
tive that the shared state survives system failures.

Current serverless systems do not address these issues effectively. First, due to the impossibility
of function-to-function communication, the prevalent practice for sharing state across functions is
to use remote storage. For instance, serverless frameworks, such as PyWren and numpywren [133],
use highly-scalable object storage services to transfer state between functions. Since object storage
is too slow to share short-lived intermediate state in serverless applications [85], some recent works
use faster storage solutions. This has been the path taken by Locus [124], which proposes to com-
bine fast, in-memory storage instances with slow storage to scale shuffling operations in MapRe-
duce. However, with all the shared state transiting through storage, one of the major limitations of
current serverless systems is the lack of support to handle mutable state at a fine granularity (e.g.,
to efficiently aggregate small granules of updates). Such a concern has been recognized in various
works [27, 75], but this type of fast, enriched storage layer for serverless computing is not available
today in the cloud, leaving fine-grained state sharing as an open issue.

Similarly, FaaS orchestration services (such as AWS Step Functions [12] or OpenWhisk Com-
poser [50]) offer limited capabilities to coordinate serverless functions [54, 75]. They have no abstrac-
tion to signal a function when a condition is fulfilled, or for multiple functions to synchronize, e.g.,
in order to guarantee data consistency, or to ensure joint progress to the next stage of computation.
Of course, such fine-grained coordination should be also low-latency to not significantly slow down
the application. Existing stand-alone notification services, such as AWS SNS [21] and AWS SQS [56],
add significant latency, sometimes hundreds of milliseconds. This lack of efficient cloud coordination
tools means that each serverless framework needs to develop its own mechanisms. For instance, Py-
Wren enforces the synchronization of map and reduce stages through object storage, while ExCamera
has built a notification system using a long-running VM-based rendezvous server. As of today, there
is no general way to let multiple functions synchronize via abstractions hand-crafted by users, so that
fine-grained coordination can be truly achieved.

Page 2 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Figure 1: CloudButton architecture

Contributions To overcome the aforementioned is-
sues, we propose CRUCIAL, a system for the de-
velopment of efficient (both stateful and stateless)
serverless applications. To simplify the writing of
an application, CRUCIAL provides a thread abstrac-
tion that maps a thread to the invocation of a server-
less function: the cloud thread. This abstraction can
be extended to build task management systems with
serverless thread pools. To support fine-grained state
management and coordination, our system builds a
distributed shared object (DSO) layer on top of a low-
latency in-memory data store. This layer provides
out-of-the-box strong consistency guarantees, simpli-
fying the semantics of global state mutation across
cloud threads. Since global state is manipulated as re-
mote objects, the interface for mutable state manage-
ment becomes virtually unlimited, only constrained
by the expressiveness of the programming language
(Java in our case). The result is that CRUCIAL can operate on small data granules, making it very easy
to develop applications that have fine-grained state sharing needs. CRUCIAL also leverages this layer
to implement fine-grained coordination. For applications that require longer retention of in-memory
state, CRUCIAL ensures data durability through replication. To ensure the consistency of replicas,
CRUCIAL uses state machine replication (SMR), so that any acknowledged write can survive failures.

Most importantly, CRUCIAL offers all of the above guarantees with almost no increase in the pro-
gramming complexity of the serverless model. With the help of a few annotations and constructs,
developers can run their single-machine, multi-threaded, stateful code in the cloud as serverless
functions. CRUCIAL’s programming constructs enable developers to enforce atomic operations on
shared state, as well as to finely synchronize functions at the application level, so that (imperative)
implementations of popular algorithms such as k-means can be effortlessly ported to serverless plat-
forms.

CRUCIAL in CloudButton The CloudButton project uses serverless technologies to simplify data
analytics and data processing for everyday programmers. Figure 1 presents a general architecture of
the project. CRUCIAL was developped in the context of CloudButton. It provides a general frame-
work to port and develop Java applications for serverless. CRUCIAL is complementary to LITHOPS

[122] and FAASM [123]. All of these works are united by a common principle of transparency: they of-
fer familiar programming concepts and abstractions, allowing to program serverless platforms much
like a regular computer.

Outline The remainder of this document is as follows:

• (§3) First, we detail the core abstractions and internals of the CRUCIAL framework. We show
that CRUCIAL is suited for many stateful distributed applications such as traditional paral-
lel computations, machine learning algorithms, and complex concurrency situations. Using
extensive evaluation of k-means and logistic regression over a 100 GB dataset, we show that
CRUCIAL can lead to 18− 40% performance improvement over Apache Spark running on ded-
icated instances at similar cost. Using CRUCIAL, we also port to serverless part of Smile [92],
a state-of-the-art multi-threaded ML library. The portage impacts less than 4% of the original
code base. It brings elasticity and on-demand capabilities to a traditional single-machine pro-
gram. Its performance are on par with a dedicated high-end server: using a random forest
classification algorithm, the portage with 200 cloud threads is up to 30% faster than a 4-CPU
160-threads dedicated server solution.

Page 3 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

• (§4) This section presents the serverless shell (sshell). sshell is built atop CRUCIAL. It brings
the massive copmutation power of the cloud to regular shell scripts. sshell is built around
a small set of components that includes a new inter-process communication layer for server-
less. We evaluate it in AWS Lambda using several micro-benchmarks and a large-scale applica-
tion. Our results show that sshell achieves comparable or better performance than a high-end
server. Moreover, it can be faster and more cost-efficient than a cluster-based solution to mine
large datasets.

• (§5) CRUCIAL includes a layer of distributed shared objects (DSO). This layer allows serverless
functions to communicate one to another and to maintain a persistent state for the application.
It is implemented atop Infinispan, an industrial-grade distributed storage system [103]. The
CloudButton project brought many improvements to Infinispan. This includes a support for
non-volatile memory, ahead-of-time compilation and a new algorithm for data placement. We
also provide a new operator for Kubernetes. This operator simplifies data access within a uni-
fied modern container-based ecosystem to serverless (and traditional) distributed applications.

• (§6) Complementary to the above works, we also investigated several innovative ideas to im-
prove CRUCIAL. This includes multiple research results on data distribution, replication and
persistence. We present the exploratory works conducted in WP4. Part of this work will be
included in future releases of CRUCIAL.

• (§7-§8) Before closing, this document reviews the state of the art on serverless computing and
make a comparison with CRUCIAL.

Many of the contributions covered in this document appeared to top tier conferences and jour-
nals in their respective domains [17, 42, 44, 52, 60, 91, 99, 144]. Most notably: TOSEM’22, SOSP’21,
Middleware’21,’19, Eurosys’20,’21 and DSN’19.

3 Stateful serverless programming with CRUCIAL

CRUCIAL is a powerful framework to create and execute complex serverless tasks atop a Function-
as-a-Service (FaaS) architecture. This section presents the programming model and the internals of
our system in detail; then some evaluation results to assess its capabilities.

3.1 Using CRUCIAL

Below, we present the programming interface of CRUCIAL and illustrate it with several applications.
We also provide a methodology to port a conventional single-machine application to serverless with
the help of our framework. Note that the programming model of CRUCIAL is also recalled in Deliv-
erable [123, §4].

3.1.1 Programming model

The programming model of CRUCIAL is object-based and can be integrated with any object-oriented
programming language. As Java is the language supported in our implementation, the following
description considers its jargon.

Overall, a CRUCIAL program is strongly similar to a regular multi-threaded, object-oriented Java
one, besides some additional annotations and constructs. Table 1 summarizes the key abstractions
available to the programmer that are detailed hereafter.

Page 4 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Table 1: Programming abstractions

Abstraction Description

CloudThread Cloud functions are invoked like threads.

ServerlessExecutorService A simple executor service for task groups and distributed parallel fors.

Shared objects Linearizable (wait-free) distributed objects (e.g., AtomicInt, AtomicLong,
AtomicBoolean, AtomicByteArray, List, Map).

Synchronization objects Shared objects providing primitives for thread synchronization (e.g., Future,
Semaphore, CyclicBarrier).

@Shared User-defined shared objects. Object methods run on the DSO servers, allowing
fine-grained updates and aggregates (e.g., .add(), .update(), .merge()).

Data persistence Long-lived shared objects are replicated. Persistence may be activated with
@Shared(persistence=true).

Cloud threads A CloudThread is the smallest unit of computation in CRUCIAL. Semantically, this
class is similar to a Thread in conventional concurrent computing. To write an application, each task
is defined as a Runnable and passed to a CloudThread that executes it. The CloudThread class hides
from the programmer the execution details of accessing the underlying FaaS platform. This enables
access transparency to remote resources [55].

Serverless executor service The ServerlessExecutorService class may be used to execute both
Runnable and Callable instances in the cloud. This class implements the ExecutorService interface,
allowing the submission of individual tasks and fork-join parallel constructs (invokeAll). The full
expressiveness of the original JDK interface is retained. In addition, this executor also includes a
distributed parallel for to run n iterations of a loop across m workers. To use this feature, the user
specifies the in-loop code (through a functional interface), the boundaries for the iteration index, and
the number of workers m.

State handling CRUCIAL includes a library of base shared objects to support mutable shared data
across cloud threads. The library consists of common objects such as integers, counters, maps, lists
and arrays. These objects are wait-free and linearizable [97]. This means that each method invocation
terminates after a finite number of steps (despite concurrent accesses), and that concurrent method
invocations behave as if they were executed by a single thread. CRUCIAL also gives programmers
the ability to craft their own custom shared objects by decorating a field declaration with the @Shared
annotation. Annotated objects become globally accessible by any thread. CRUCIAL refers to an object
with a key crafted from the field’s name of the encompassing object. The programmer can override
this definition by explicitly writing @Shared(key=k). Our framework supports distributed references,
permitting a reference to cross the boundaries of a cloud thread. This feature helps to preserve the
simplicity of multi-threaded programming in CRUCIAL.

Data Persistence Shared objects in CRUCIAL can be either ephemeral or persistent. By default, shared
objects are ephemeral and only exist during the application lifetime. Once the application finishes,
they are discarded. Ephemeral objects can be lost, e.g., in the event of a server failure in the DSO
layer, since the cost of making them fault-tolerant outweighs the benefits of their short-term availabil-
ity [85]. Nonetheless, the annotation @Shared(persistent=true) enables to make them persistent.
Persistent objects outlive the application lifetime and are only removed from storage by an explicit
call.

Page 5 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 public class PiEstimator implements Runnable {
2 private final static long ITERATIONS = 100_000_000;
3 private Random rand = new Random();
4 @Shared(key="counter")
5 AtomicLong counter = new AtomicLong(0);
6
7 public void run() {
8 long count = 0;
9 double x, y;

10 for (long i = 0L; i < ITERATIONS; i++) {
11 x = rand.nextDouble();
12 y = rand.nextDouble();
13 if (x * x + y * y <= 1.0) count++;
14 }
15 counter.addAndGet(count);
16 }
17 }
18
19 List<Thread> threads = new ArrayList<>(N_THREADS);
20 for (int i = 0; i < N_THREADS; i++) {
21 threads.add(new CloudThread(new PiEstimator()));
22 }
23 threads.forEach(Thread::start);
24 threads.forEach(Thread::join);
25 double output = 4.0 * counter.get() / (N_THREADS * ITERATIONS);

Listing 1: Monte Carlo simulation to approximate π.

1 ExecutorService se = new ServerlessExecutorService();
2 List<Callable> tasks = IntStream.range(0, N_THREADS)
3 .mapToObj(i -> Executors.callable(new PiEstimator())).collect(Collectors.toList());
4 se.invokeAll(tasks);

Listing 2: Using the ServerlessExecutorService to perform a Monte Carlo simulation.

Synchronization Current serverless frameworks support only uncoordinated embarrassingly par-
allel operations, or bulk synchronous parallelism (BSP) [63, 75]. To provide fine-grained coordination
of cloud threads, CRUCIAL offers several primitives such as cyclic barriers and semaphores. These
coordination primitives are semantically equivalent to those in the standard java.util.concurrent
library. They allow a coherent and flexible model of concurrency for cloud functions that is non-
existent as of today.

3.1.2 Sample applications

Listing 1 presents an application implemented with CRUCIAL. This simple program is a multi-
threaded Monte Carlo simulation that approximates the value of π. It draws a large number of
random points and computes how many of them fall in the circle enclosed by the unit square. The
ratio of points falling in the circle converges with the number of trials toward π/4 (line 25).

The application first defines a regular Runnable class that carries the estimation of π (lines 1 to 17).
To parallelize its execution, lines 23 and 24 run a fork-join pattern using a set of CloudThread in-
stances. The shared state of the application is a counter object (line 5). This counter maintains the
total number of points falling into the circle, which serves to approximate π. It is updated by the
threads concurrently using the addAndGet method (line 15).

The previous fork-join pattern can also be implemented using the ServerlessExecutorService.
In this case, we simply replace lines 19 to 24 in Listing 1 with the content of Listing 2.

A second application is shown in Listing 3. This program outputs an image approximating the
Mandelbrot set (a subset of C) with a gradient of colors. The output image is stored in a CRUCIAL

shared object (line 3). To create the image, the application computes the color of each pixel (line 5).
The color indicates when the pixel escaped from the Mandelbrot set (after a bounded number of

Page 6 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 public class Mandelbrot implements Serializable {
2 @Shared(key = "mandelbrotImage")
3 private MandelbrotImage image = new MandelbrotImage();
4
5 private static int[] computeRow(int row, int width, int height, int maxIters) {...}
6
7 private void compute() {
8 image.init(COLUMNS, ROWS);
9 ServerlessExecutorService se = new ServerlessExecutorService();

10 se.invokeIterativeTask(row -> image.setRowColor(row, computeRow(row, COLUMNS, ROWS,
MAX_INTERNAL_ITERS)), N_TASKS, 0, ROWS);

11 se.shutdown();
12 }
13 }

Listing 3: Mandelbrot set computation in a distributed parallel for.

iterations). The rows of the image are processed in parallel, using the invokeIterativeTask method
of the ServerlessExecutorService class. As seen at line 10, this method takes as input a functional
interface (IterativeTask) and three integers. The interface defines the function to apply on the index
of the for loop. The integers define respectively the number of tasks among which to distribute the
iterations, and the boundaries of these iterations (fromInclusive, toExclusive).

This second example illustrates the expressiveness and convenience of our framework. In par-
ticular, as in multi-threaded programming, CRUCIAL allows to define concurrent tasks with lambda
expressions and pass them shared variables defined in the encompassing class.

3.1.3 Portage to serverless

The previous sections detail the programming interface of CRUCIAL and illustrate it with base ap-
plications. In this section, we turn our attention to the problem of porting existing applications to
serverless. We first explain the benefits an application may have from a port to serverless and a
methodology to achieve it. Further, we present the limitations of this methodology and how the pro-
grammer can overcome them. In §3.4.4, we evaluate the successful application of this methodology
to port Smile [92], a state-of-the-art machine learning library.

Benefits & Target applications CRUCIAL can be used not only to program serverless-native appli-
cations, but also to port existing single-machine applications to serverless. Successfully porting an
application comes with several incentives; namely the ability to (i) access on-demand computing re-
sources; (ii) scale these resources dynamically; and (iii) benefit from a fine-grained pricing for their
usage. To match the programming model of CRUCIAL, Java applications that can benefit from a
portage should be multi-threaded. Moreover, as with other parallel programming frameworks (e.g.,
MPI [140] or MapReduce [38]), they should be inherently parallel.

Methodology CRUCIAL allows to port an existing Java multi-threaded application to serverless
with low effort. To this end, the following steps should be taken: (1) The programmer replaces the
ExecutorService or Thread instances with their CRUCIAL counterparts, as listed in Table 1. (2) The
programmer makes Serializable each immutable object passed between cloud threads. (3) The pro-
grammer substitutes the concurrent mutable objects shared by threads with the equivalent ones pro-
vided by the DSO layer. For example, an instance of java.util.atomic.AtomicBoolean is replaced
with org.crucial.dso.AtomicBoolean. (4) Regarding synchronization primitives, the programmer
must transform them into distributed objects. As an example, a cyclic barrier can be replaced with
org.crucial.dso.CyclicBarrier, an implementation based internally on a monitor. Another option
is org.crucial.dso.ScalableCyclicBarrier, that implements the collective described in [65]. (5) If
the application uses the synchronized keyword, some rewriting is necessary. Recall that this key-
word is specific to the Java language and allows to use any (non-primitive) object as a monitor [66].

Page 7 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 public class WordCount {
2 private Document document = new Document(LOCATION);
3 private String word = "serverless";
4
5 private void compute() {
6 AtomicLong counter = new AtomicLong("wordcount");
7 ServerlessExecutorService se = new ServerlessExecutorService();
8 se.invokeIterativeTask(i -> counter.addAndGet(countWords(word, document.split(i))), N_TASKS, 0,

N_TASKS);
9 }

10 }

Listing 4: Parallel word count.

CRUCIAL does not support the synchronized keyword out of the box since it would require modi-
fying the JVM. Two solutions are offered to the programmer: (i) create a monitor object in DSO and
use it where appropriate; or (ii) create a method for the object used as a monitor that contains all the
code in the synchronized{..} block. Then, this object is annotated as @Shared in the application,
and the method called where appropriate. The first solution is simple, but it might not be the most
efficient since it requires to move data back and forth the cloud threads that use the monitor. The
second solution needs rewriting part of the original application. However, it is more in line with
the object-oriented approach in CRUCIAL, where an operation updating a shared object is accessible
through a (linearizable) method, and it may perform better.

Limitations & Solutions The above methodology works for most applications, yet it has limita-
tions. First, some threading features are not available in the framework —e.g., signaling a cloud
thread. Second, CRUCIAL does not natively support arrays (e.g., T[] tab). Indeed, recall that the
Java language offers native methods to manipulate such data types. For instance, calling tab[i]=x
assigns the value (or reference) x to tab[i]. Transforming a native call is not possible with just anno-
tations.2 The solution to these two problems is to rewrite the application appropriately, as in the case
of synchronized.

Another issue is related to data locality. Typically, a multi-threaded application initializes shared
data in the main thread and then makes it accessible to other threads for computation. Porting such
a programming pattern to FaaS implies that data is initialized at the machine starting up the appli-
cation, then serialized to be accessible elsewhere; this is very inefficient. Instead, a better approach is
to pass a distributed reference that is lazily de-referenced by the thread. To illustrate this point, con-
sider Listing 4 which counts the number of occurrences of the word “serverless” in a document.
The application first constructs a reference to the document (line 1). Then, the document is split into
chunks. For each chunk, the number of occurrences of the word is counted by a cloud thread (line 2).
The results are then aggregated in the shared counter “wordcount”. Reading the document in full at
line 1 and serializing it to construct the chunks is inefficient. Instead, the application should send a
distributed reference to the cloud threads at line 2. Then, upon calling split, the chunks are created
on each thread by fetching the content from remote storage.

3.2 Design

Figure 2 presents the overall architecture of CRUCIAL. In what follows, we detail its components and
describe the lifecycle of an application in our system.

CRUCIAL encompasses three main components (from left to right in Figure 2): the client applica-
tion; the FaaS computing layer that runs the cloud threads; and the DSO layer that stores the shared
objects. A client application differs from a regular JVM process in two aspects: threads are executed
as cloud functions, and they access shared data using the DSO layer. Moreover, CRUCIAL applica-
tions may also rely on external cloud services, such as object storage to fetch input data (not modeled

2It is however possible with bytecode manipulation tools (e.g., [24]).

Page 8 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

FaaS Layer

...

Cloud thread 1

Cloud thread n

Cloud thread 2

DSO Layer

Obj D

Node 0

Obj B

Obj A

Node m

Obj A

Node 1

Obj C

1) Function invocations 2) Access to shared state

21

Client

Application

Figure 2: CRUCIAL’s overall architecture. A client application runs a set of cloud threads in the FaaS
layer. The cloud threads and the client have access to the shared state stored in the DSO layer.

in Figure 2).

3.2.1 The distributed shared objects layer

Each object in the DSO layer is uniquely identified by a reference. Fine-grained updates to the shared
state are implemented as methods of these objects. Given an object of type T, the reference to this
object is (T, k), where k is either the name of the annotated object field or the value of the parameter
key in the annotation @Shared(key=k). When a cloud thread accesses an object, it uses its reference
to invoke remotely the appropriate method.

CRUCIAL constructs the DSO layer using consistent hashing [82], similarly to Cassandra [86].
Each storage node knows the full storage layer membership and thus the mapping from data to
node. The location of a shared object o is determined by hashing the reference (T, k) of o. This
offers the following usual benefits: 1. no broadcast is necessary to locate an object; 2. disjoint-access
parallelism [71] can be exploited; and 3. service interruption is minimal in the event of server addition
and removal. The latter property is useful for persistent objects, as detailed next.

Persistence One interesting aspect of CRUCIAL is that it can ensure durability of the shared state.
This property is appealing, for instance, to support the different phases of a machine learning work-
flow (training and inference). Objects marked as persistent are replicated rf (replication factor) times
in the DSO layer. They reside in memory to ensure sub-millisecond read/write latency and can be
passivated to stable storage using standard mechanisms (marshalling). When a cloud thread ac-
cesses a shared object, it contacts one of the server nodes. The operation is then forwarded to the
actual replicas storing the object. Each replica executes the incoming call, and one of them sends the
result back to the caller. Notice that for ephemeral —non-persistent— objects, rf is 1.

Extensions Traditionally, data is persisted on disk asynchronously. This avoids the cost of having
a disk access in the critical path but lower durability: if the system stops before data is flushed, one
or more updates can be lost. The release of Intel Optane DC, and the global availability of persistent
memory, offers the promise to reduce drastically the cost of durability. DSO now integrates a new
persistent backend to leverage this medium. The backend is built using the J-NVM framework and
we detail it in §5.1.

Consistency CRUCIAL provides linearizable objects and programmers can reason about interleav-
ing as in the shared-memory case. This greatly simplifies the writing of stateful serverless applica-
tions. For persistent objects, consistency across replicas is maintained with the help of state machine

Page 9 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

replication (SMR) [131]. To handle membership changes, the DSO layer relies on a variation of vir-
tual synchrony [29]. Virtual synchrony provides a totally-ordered set of views to the server nodes.
In a given view, for some object x, the operations accessing x are sent using total order multicast.
The replicas of x deliver these operations in a total order and apply them on their local copy of x
according to this order. A distinct replica (primary) is in charge of sending back the result to the
caller. When a membership change occurs, the nodes re-balance data according to the new view. In
[17], we provide a full pseudo-code of this construction together with a proof of correctness.

Extensions Weaker consistency models were also investigated through the notion of degradability
– the full details appear in §6.2.

3.2.2 Fast aggregates through remote procedure call

Stateful applications commonly aggregate and combine small granules of data (e.g., the training
phase of a ML algorithm). Unfortunately, cloud functions are not network-addressable and run sep-
arate from data. As a consequence, these applications are routinely left with no other choice but to
“ship data to code”. This is known as one of the biggest downsides of FaaS platforms [63].

To illustrate this point, consider an AllReduce operation where N cloud functions need to aggre-
gate their results by applying some commutative and associative operator f (e.g., a sum). To achieve
this, each function first writes its local result in the storage layer. Then, the functions await that their
peers do the same, fetch the N results, and apply f sequentially. This algorithm is expensive and
entails a communication cost of N2 messages with the storage layer.

CRUCIAL fully resolves this anti-pattern with minimal efforts from the programmer. Complex
computations are implemented as object methods in DSO and called by the cloud functions where
appropriate. Going back to the above example, each function simply calls f (r) on the shared ob-
ject, where r is its local result. This is for instance the case at line 8 in Listing 4 with the method
counter.addAndGet. With this approach, communication complexity is reduced to O(N) messages
with the storage layer.

We exploit this key feature of CRUCIAL in our serverless implementation of several ML algo-
rithms (e.g., k-means, linear regression, random forest). Its performance benefits are detailed in
§3.4.2.

3.2.3 Lifecycle of an application

The lifecycle of a CRUCIAL application is similar to that of a standard multi-threaded Java one. Every
time a CloudThread is started, a Java thread (i.e., an instance of java.lang.Thread) is spawned on
the client. This thread pushes the Runnable code attached to the CloudThread to a generic function
in the FaaS platform. Then, it waits for the result of the computation before it returns.

Accesses to some shared object of type T at cloud threads (or at the client) are mediated by a
proxy. This proxy is instantiated when a call to “new T()” occurs, and either the newly created object
of type T belongs to CRUCIAL’s library, or it is tagged @Shared. As an example, consider the counter
used in Listing 1. When an instance of PiEstimator is spawned, the field counter is created. The
“new” statement is intercepted and a local proxy for the counter is instantiated to mediate calls to the
remote object hosted in the DSO layer. If this object does not exist in the DSO layer, it is instantiated
using the constructor defined at line 5. From thereon, any call to addAndGet (line 15) is pushed to the
DSO layer. These calls are delivered in total order to the object replicas where they are applied before
sending back a response value to the caller.

The Java thread remains blocked until the cloud function terminates. Such a behavior gives cloud
threads the appearance of conventional threads; minimizing code changes and allowing the use of
the join() method at the client to establish synchronization points (e.g., fork/join pattern). It must
be noted, however, that as cloud functions cannot be canceled or paused, the analogy is not complete.
If any failure occurs in a remote cloud function, the error is propagated back to the client application
for further processing.

Page 10 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

The case of the ServerlessExecutorService builds on the same idea as CloudThread. A standard
Java thread pool is used internally to manage the execution of all tasks. In the case of a callable task,
the result is accessible to the caller in a Future object.

3.2.4 Fault tolerance

Fault tolerance in CRUCIAL is based on the disaggregation of the compute and storage layers. On
the one hand, writes to DSO can be made durable with the help of data replication. In such a case,
CRUCIAL tolerates the joint failure of up to rf − 1 servers.3 On the other hand, CRUCIAL offers
the same fault-tolerance semantics in the compute layer as the underlying FaaS platform. In AWS
Lambda, this means that any failed cloud thread can be re-started and re-executed with the exact
same input. Thanks to the cloud thread abstraction, CRUCIAL allows full control over the retry sys-
tem. For instance, the user may configure how many retries are allowed and/or the time between
them. If retries are permitted, the programmer should ensure that the re-execution is sound (e.g., it
is idempotent). Fortunately, atomic writes in the DSO layer make this task easy to achieve. Consid-
ering the k-means example depicted in Listing 5 (or another iterative algorithm), it simply consists in
sharing an iteration counter (line 6). When a thread fails and re-starts, it fetches the iteration counter
and continues its execution from thereon.

3.3 Implementation

The implementation of CRUCIAL is open source and available online [6]. It consists of around 10K
SLOC, including scripts to deploy and run CRUCIAL applications in the cloud. The DSO layer is
written atop the Infinispan in-memory data grid [103] as a partial rewrite of the CRESON project [145].

A CRUCIAL application is written in Java and uses Apache Maven to compile and manage its
dependencies. It employs the abstractions listed in Table 1 and has access to scripts that automate its
deployment and execution in the cloud.

To run cloud threads, our prototype implementation relies on AWS Lambda. Lambda functions
are deployed with the help of a Maven plugin [5] and invoked via the AWS Java SDK. To control
the replay mechanism, calls to Lambda are synchronous. The adherence of CRUCIAL to Lambda is
limited and the framework can execute atop a different FaaS platform with a few changes. In §7.1,
we discuss this platform dependency.

The ServerlessExecutorService implements the base ExecutorService interface. It accepts
Callable objects and task collections. The invocation of a Callable returns a (local) Future ob-
ject. This future is completed once a response from AWS Lambda is received. For Runnable tasks,
the response is empty unless an error occurs. In that case, the system interprets it and throws an
exception at the client machine, referencing the cause.

To create a distributed parallel for, the programmer uses an instance of IterativeTask (as illus-
trated at line 10 in Listing 3). This functional interface is similar to java.util.function.Consumer,
but limited to iteration indexes (i.e., the input parameter must be an integer). Internally, the iterative
task creates a collection of Callable objects. In our current prototype, the scheduling is static and
based on the number of workers and tasks given in parameter.

When an AWS Lambda function is invoked, it receives a user-defined Runnable (or Callable)
object. The object and its content are marshalled and shipped to the remote machine, where they
are re-created. Initialization parameters can be given to the constructor. As pointed out in §3.1.1, a
distributed reference is sent in lieu of a shared object.

Proxies for the shared objects are waved into the code of the client application using AspectJ [83].
In the case of user-defined objects, the aspects are applied to the annotated fields (see §3.1.1). Such
objects must be serializable and they should contain an empty constructor (similarly to a JavaBean).
The jar archive containing the definition of the objects is uploaded to the DSO servers where it is
dynamically loaded.

3Synchronization objects (see Table 1) are not replicated. This is not an important issue due to their ephemeral nature.

Page 11 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Synchronization objects (e.g., barriers, semaphores, futures) follow the structure of their Java
counterparts. They rely internally on Java monitors. When a client performs a call to a remote object,
it remains blocked until the request responds. The server processes the operation with a designated
thread. During the method invocation, that thread may suspend itself through a wait call on the
object until another thread awakes it.

State machine replication (SMR) is implemented using Infinispan’s interceptor API. This API en-
ables the execution of custom code during the processing of a data store operation. It follows the
visitor pattern as commonly found in storage systems. Infinispan [103] relies on JGroups [62] for
total order multicast. The current implementation uses Skeen’s algorithm [20].

In our prototype, the deployment of the storage layer is explicitly managed (like, e.g., AWS Elas-
tiCache). Automatic provisioning of storage resources for serverless computing remains an open
issue [27, 75], with just a couple works appearing very recently in this area [85, 124].

3.4 Evaluation

This section evaluates the performance of CRUCIAL and its usability to program stateful serverless
applications.

Outline We first evaluate the runtime of CRUCIAL with a series of micro-benchmarks (§3.4.1). Then,
we focus on fine-grained updates to shared mutable data (§3.4.2) and fine-grained synchronization
(§3.4.3). Further, we detail the (partial) portage to serverless of the Smile library [92] (§3.4.4). Finally,
we analyze the usability of our framework when writing (or porting) applications (§3.4.5).

Goal & scope. The core objective of this evaluation is to understand the benefits of CRUCIAL to pro-
gram applications for serverless. To this end, we distinguish two types of applications: serverless-
native and ported applications. Serverless-native applications are those written from scratch for a
FaaS infrastructure. Ported applications are the ones that were initially single-machine applications
and were later modified to execute atop FaaS. For both types of applications, our evaluation cam-
paign aims at providing answers to the following questions:

- How easy is it to program with CRUCIAL? (§3.4.2 and §3.4.3). In addressing this question, we
specifically focus on the following applications: machine learning , data analytics and syn-
chronization tasks. These applications are parallel and stateful, that is they contain parallel
components that need to update a shared state and synchronize to make progress.

- Do applications programmed with CRUCIAL benefit from the capabilities of serverless (e.g., scalability
and on-demand pricing)? (§3.4.4)

- How efficient is an application programmed with CRUCIAL? (§3.4.2) For serverless-native applica-
tions, we compare CRUCIAL to PyWren, a state-of-the-art solution for serverless programming.
We also make a comparison with Apache Spark, the de facto standard approach to program
stateful cluster-based programs. For ported applications, we compare CRUCIAL to a scale-up
approach, using a high-end server.

- How costly is CRUCIAL with respect to other solutions? (§3.4.5) Here we are interested both in the
programming effort to code a serverless application and its monetary cost when running atop a
FaaS platform. Again, answers are provided for both serverless-native and ported applications.

Experimental setup. All the experiments are conducted in Amazon Web Services (AWS), within
a Virtual Private Cloud (VPC) located in the us-east-1 region. Unless otherwise specified, we use
r5.2xlarge EC2 instances for the DSO layer and 3 GB AWS Lambda functions. Experiments with
concurrency over 300 cloud threads are run outside the VPC due to service limitations.

The code of the experiments presented in this section is available online [6].

Page 12 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Table 2: Average latency comparison – 1 KB payload

PUT GET

S3 34, 868µs 23, 072µs
Redis 232µs 229µs
Infinispan 228µs 207µs
CRUCIAL 231µs 229µs
CRUCIAL (rf = 2) 512µs 505µs

3.4.1 Micro-benchmarks

As depicted in Figure 2, the runtime of CRUCIAL consists of two components: a Function-as-a-Service
(FaaS) platform and the DSO layer. In this section, we evaluate the performance of this runtime across
several micro-benchmarks.

Latency Table 2 compares the latency to access a 1 KB object sequentially in CRUCIAL (DSO), Redis,
Infinispan, and S3. We chose Redis because it is a popular key-value store available on almost all
cloud platforms, and it has been extensively used as storage substrate in prior serverless systems [74,
85, 124]. Each function performs 30K operations and we report the average access latency. In Table 2,
CRUCIAL exhibits a performance similar to other in-memory systems. In particular, it is an order
of magnitude faster than S3. This table also depicts the effect of object replication. When data is
replicated, SMR adds an extra round-trip, doubling the latency perceived at a client. The number of
replicas does not affect this behavior, as shown in the next experiment.

Throughput We measure the throughput of CRUCIAL and compare it against Redis. For an accurate
picture, replication is enabled in both systems to capture their performance under scenarios of high
data availability and durability.

In this experiment, 200 cloud threads access 800 shared objects during 30 s. The objects are chosen
at random. Each object stores an integer offering basic arithmetic operations. We consider simple
and complex operations. The simple operation is a multiplication. The complex one is the sequential
execution of 10K multiplications. In Redis, these operations require several commands which run as
Lua scripts for both consistency and performance.

To replicate data, Redis uses a master-based mechanism. By default, replication is asynchronous,
so the master does not wait for a command to be processed by the replicas. Consequently, clients
can observe stale data. In our experiment, to minimize inconsistencies and offer guarantees closer to
CRUCIAL, functions issue a WAIT command after each write [127]. This command flushes the pending
updates to the replicas before it returns.

We compare the average throughput of the two systems when the replication factor (rf) of a datum
varies as follows: (rf = 1) Both CRUCIAL and Redis (2 shards with no replicas) are deployed over
a 2-node cluster; (rf = 2) In the same 2-node cluster, Redis nows uses one master and one replica;
(rf = 3) We add a third node to the cluster and Redis employs one master and two replicas. In
Figure 3, “Redis WAIT r” indicates that r is the number of synchronously replicated copies of shared
objects.

The experimental results reported in Figure 3 show that CRUCIAL is not sensitive to the com-
plexity of operations. Redis is 50% faster for simple operations because its implementation is op-
timized and written in C. However, for complex operations, CRUCIAL is almost five times better
than Redis. Again, implementation-specific details are responsible for this behavior: while Redis is
single-threaded, and thus concurrent calls to the Lua scripts run sequentially, CRUCIAL benefits from
disjoint-access parallelism [71]. When objects are replicated, the comparison is similar. In particular,
Figure 3 shows that CRUCIAL and Redis have close performance when Redis operates in synchronous
mode.

Page 13 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 2 30

1

2

×105 Simple Op

1 2 3

Complex Op
Crucial
Redis async
Redis WAIT 1
Redis WAIT 2

0.0 0.2 0.4 0.6 0.8 1.0
Copies per key

0.00

0.25

0.50

0.75

1.00

�
ro

ug
hp

ut
(o

ps
/s

)

Figure 3: Operations per second performed in CRUCIAL and Redis (with and without replication).
Cloud threads access uniformly at random 800 different keys/objects.

This experiment also verifies that the performance of CRUCIAL is not sensitive to the number of
replicas. Indeed, the throughput in Figure 3 is roughly equivalent for all values of rf ≥ 2. This comes
from the fact that CRUCIAL requires a single RTT to propagate an operation to the replicas.

Parallelism We first evaluate our framework with the Monte Carlo simulation presented in List-
ing 1. This algorithm is embarrassingly parallel, relying on a single shared object (a counter). The
simulation runs with 1 to 800 cloud threads and we track the total number of points computed per
second. The results, presented in Figure 4a, show that our system scales linearly and that it exhibits
a 512× speedup with 800 threads.

We further evaluate the parallelism of CRUCIAL with the code in Listing 3. This second experi-
ment computes a 30K×30K projection of the Mandelbrot set, with (at most) 1000 iterations per pixel.
As shown in Figure 4b, the completion time decreases from 150 s with 10 threads to 14.5 s with 200
threads: a speedup factor of 10.2× over the 10-thread execution. This super-linear speedup is due
to the skew in the coarse-grained row partitioning of the image. It also underlines a key benefit of
CRUCIAL. If this task is run on a cluster, the cluster is billed for the entire job duration, even if some
of its resources are idle. Running atop serverless resources, this implementation ensures instead that
row-dependent tasks are billed for their exact duration.

Takeaways The distributed shared objects (DSO) layer of CRUCIAL is on par with existing in-
memory data stores in terms of latency and throughput. For complex operations, it significantly out-
performs Redis due to data access parallelism. CRUCIAL scales linearly to hundreds of cloud threads.
Applications written with the framework benefit from the serverless provisioning and billing model
to match irregularities in parallel tasks.

3.4.2 Fine-grained state management

This section shows that CRUCIAL is efficient for parallel applications that access shared state at fine
granularity. We detail the implementation of two machine learning algorithms in the framework.
These algorithms are evaluated against a single-machine solution, as well as two state-of-the-art
frameworks for cluster computing (Apache Spark) and FaaS-based computation (PyWren).

A serverless k-means Listing 5 details the code of a k-means clustering algorithm written with
CRUCIAL. This program computes k clusters from a set of points across a fixed number of iterations,
or until some convergence criterion is met (line 21). The algorithm is iterative, with recurring syn-
chronization points (line 19), and it uses a small mutable shared state. Listing 5 relies on shared
objects for the convergence criterion (line 4), the centroids (line 8), and a synchronization object to

Page 14 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0 250 500 750
Number of threads

0.0

2.5

5.0

7.5

Ra
nd

om
po

in
ts

/s
×109

(a)

0 100 200
Number of threads

0

50

100

150

Ti
m

e
(s)

(b)

0 100 200 300
Number of threads

0.25

0.50

0.75

1.00

Sc
al

eu
p

Ideal scaleup
Crucial
m5.4xlarge
m5.2xlarge

(c)

Figure 4: (a) Scalability of a Monte Carlo simulation to approximate π. CRUCIAL reaches 8.4 bil-
lion random points per second with 800 threads. (b) Scalability of a Mandelbrot computation with
CRUCIAL. (c) Scalability of the k-means clustering algorithm with CRUCIAL versus single-machine
multi-threading.

1 public class KMeans implements Runnable {
2 private CyclicBarrier barrier = new CyclicBarrier();
3 @Shared(key = "delta")
4 private GlobalDelta globalDelta = new GlobalDelta();
5 @Shared(key = "iterations")
6 private AtomicInteger globalIterCount = new AtomicInteger();
7 // Wraps a list of @Shared centroids
8 private GlobalCentroids centroids = new GlobalCentroids();
9

10 public void run() {
11 loadDatasetFragment();
12 int iterCount = globalIterCount.intValue();
13 do {
14 correctCentroids = globalCentroids.getCorrectCoordinates();
15 resetLocalStructures();
16 localDelta = computeClusters();
17 globalDelta.update(localDelta);
18 centroids.update(localCentroids, localSizes);
19 barrier.await();
20 globalIterCount.compareAndSet(iterCount, iterCount++);
21 } while (iterCount < maxIterations && !endCondition());
22 }
23 }

Listing 5: k-means implementation with CRUCIAL.

coordinate the iterations (line 2). At each iteration, the algorithm needs to update both the centroids
and the criterion. The corresponding method calls (lines 14, 17 and 18) are executed remotely in DSO.

Figure 4c compares the scalability of CRUCIAL against two EC2 instances: m5.2xlarge and m5.4xlarge,
with 8 and 16 vCPUs respectively. In this experiment, the input increases proportionally to the num-
ber of threads. We measure the scale-up computed with respect to that fact: scale-up = T1/Tn, where
T1 is the execution time of Listing 5 with one thread, and Tn when using n threads.4 Accordingly,
scale-up = 1 means a perfect linear scale-up, i.e., the increase in the number of threads keeps up with
the increase in the workload size (top line in Figure 4c). The scale-up is sub-linear when scale-up < 1.
As expected, the single-machine solution quickly degrades when the number of threads exceeds the
number of cores. The solution using CRUCIAL is within 10% of the optimum. For instance, with
160 threads, the scale-up factor is approximately 0.94. This lowers to 0.9 for 320 threads due to the
overhead of creating the cloud threads.

4In Figure 4c, threads are AWS Lambda functions for CRUCIAL, and standard Java threads for the EC2 instances.

Page 15 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Spark Crucial0

20

40

60

80

Ite
ra

tio
ns

tim
e

(s)

(a)

0 20 40 60
Time (s)

0.4

0.6

Lo
gi

st
ic

lo
ss

Spark
Crucial

(b)

25 50 100 200
Number of clusters

0

50

100

150

200

Ite
ra

tio
ns

tim
e

(s)

Spark
Crucial

(c)

25 50 100 200
Number of clusters

0

25

50

75

100

Sh
ar

ed
ac

ce
ss

tim
e

(s) PyWren
Crucial

(d)

Figure 5: Comparison of CRUCIAL and the state-of-the-art. (a) Average logistic regression iterative
phase completion time (100 iterations). (b) Logistic regression performance. (c) Average k-means
iterative phase completion time (10 iterations) with varying number of clusters. (d) Average k-means
shared state access time.

Comparison with Spark Apache Spark [160] is a state-of-the-art solution for distributed compu-
tation in a cluster. As such, it is extensively used to scale many kinds of applications in the cloud.
One of them is machine learning (ML) training, as enabled by Spark’s MLlib [106] library. Most ML
algorithms are iterative and share a modest amount of state that requires per-iteration updates. Con-
sequently, they are a perfect fit to assess the efficiency of fine-grained updates in CRUCIAL against a
state-of-the-art solution. This is the case of logistic regression and k-means clustering, which we use
in this section to compare CRUCIAL and Spark.

(Setup) For this comparison, we provide equivalent CPU resources to all competitors. In detail,
CRUCIAL experiments are run with 80 concurrent AWS Lambda functions and one storage node.
Each AWS Lambda function has 1792 MB and 2048 MB of memory for logistic regression and k-
means, respectively. These values are chosen to have the optimal performance at the lowest cost (see
§3.4.5).5 The DSO layer runs on a r5.2xlarge EC2 instance. Spark experiments are run in Amazon
EMR with 1 master node and 10 m5.2xlarge worker nodes (Core nodes in EMR terminology), each
having 8 vCPUs. Spark executors are configured to utilize the maximum resources possible on each
node of the cluster. To improve the fairness of our comparison, the time spent in loading the dataset
from S3 and parsing it is not considered for both solutions. For Spark, the time to provision the
cluster is not counted. Regarding CRUCIAL, FaaS cold starts are also excluded from measurements
due to a global barrier before starting the computation.

(Dataset) The input is a 100 GB dataset generated with spark-perf [37] that contains 55.6M el-
ements. For logistic regression, each element is labeled and contains 100 numeric features. For
k-means, each element corresponds to a 100-dimensional point. The dataset has been split into 80
equal-size partitions to ensure that all partitions are small enough to fit into the function memory.
Each partition has been stored as an independent file in Amazon S3.

(Logistic regression) We evaluate a CRUCIAL implementation of logistic regression against its coun-
terpart available in Spark’s MLlib [106]: LogisticRegressionWithSGD. A key difference between the
two implementations is the management of the shared state. Each iteration, Spark broadcasts the cur-
rent weight coefficients, computes, and finally aggregates the sub-gradients in a MapReduce phase.
In CRUCIAL, the weight coefficients are shared objects. Each iteration, a cloud thread retrieves the
current weights, computes the sub-gradients, updates the shared objects, and synchronizes with the
other threads. Once all the partial results are uploaded to the DSO layer, the weights are recomputed,
and the threads proceed to the next iteration.

In Figures 5a and 5b, we measure the running time of 100 iterations of the algorithm and the
logistic loss after each iteration. Results show that the iterative phase is 18% faster in CRUCIAL

5Starting with a configuration of 1792 MB, an AWS Lambda function has the equivalent to 1 full vCPU (https://docs.
aws.amazon.com/lambda/latest/dg/resource-model.html). Also, with this assigned memory, the function uses a full
Elastic Network Interface (ENI) in the VPC.

Page 16 of 56

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

H2020 825184 RIA
XX/XX/2022 CloudButton

(62.3 s) than with Spark (75.9 s), and thus the algorithm converges faster. This gain is explained by the
fact that CRUCIAL aggregates and combines the sub-gradients in the storage layer. On the contrary,
each iteration in Spark requires a reduce phase that is costly both in terms of communication and
synchronization.

(k-means) We compare the k-means implementation described in §3.4.2 to the one in MLlib. For
both systems, the centroids are initially at random positions and the input data is evenly distributed
among tasks. Figure 5c shows the completion time of 10 iterations of the clustering algorithm. In this
figure, we consider different values of k to assess the effectiveness of our solution when the size of
the shared state varies. With k = 25, CRUCIAL completes the 10 iterations 40% faster (20.4 s) than
Spark (34 s). The time gap is less noticeable with more clusters because the time spent synchronizing
functions is less representative. In other words, the iteration time becomes increasingly dominated by
computation. As in the logistic regression experiment, CRUCIAL benefits from computing centroids
in the DSO layer, while Spark requires an expensive reduce phase at each iteration.

Comparison with PyWren We close this section by comparing CRUCIAL to a serverless-native state-
of-the-art solution. To date, the most evaluated framework to program stateful serverless applica-
tions is PyWren [74]. Its primitives, such as call_async and map are comparable to CRUCIAL’s cloud
thread and serverless executor abstractions. Our evaluation employs Lithops, a recent and improved
version of PyWren (see [122] for the full details). PyWren is a MapReduce framework. Thus, it does
not natively provide advanced features for state sharing and synchronization. Therefore, following
the recommendations by Jonas et al. [74], we use Redis for this task.

(Setup) We employ the same application, dataset, and configuration as in the previous experiment.
The two frameworks use AWS Lambda for execution. A single r5.2xlarge EC2 instance runs DSO
for CRUCIAL, or Redis for PyWren.

(k-means) Implementing k-means above PyWren requires to store the shared state in Redis, that is
the centroids and the convergence criterion. Following Jonas et al. [74], we use a Lua script to achieve
this. At the end of each iteration, every function updates (atomically) the shared state by calling the
script. This approach is the best solution in terms of performance. In particular, it is more efficient
than using distributed locking due to the large number of commands needed for the updates. To
synchronize across iterations, we use the Redis barrier covered in §3.4.3.

The CRUCIAL and PyWren k-means applications are written in different languages (Java and
Python, respectively). Consequently, the time spent in computation for the two applications is dis-
similar. For that reason, and contrary to the comparison against Spark, Figure 5d does not report
the completion time. Instead, this figure depicts the average time spent in accessing the shared state
during the k-means execution for both CRUCIAL and PyWren. This corresponds to the time spent
inside the loop in Listing 5 (excluding line 16).

In Figure 5d, we observe that the solution combining PyWren and Redis is always slower than
CRUCIAL. This comes from the fact that CRUCIAL allows efficient fine-grained updates to the shared
state. Such results are in line with the ones presented in §3.4.1.

Takeaways The distributed shared objects (DSO) layer of CRUCIAL offers abstractions to program
stateful serverless applications. DSO is not only convenient but, as our evaluation confirms, efficient.
For two common machine learning tasks, CRUCIAL is up to 40% faster than Spark, a state-of-the-art
cluster-based approach, at comparable resource usage. It is also faster than a solution using jointly
PyWren, a well-known serverless framework, and the Redis data store.

3.4.3 Fine-grained synchronization

This section analyzes the capabilities of CRUCIAL to coordinate cloud functions. We evaluate the
synchronization primitives available in the framework and compare them to state-of-the-art solu-
tions. We then demonstrate the use of CRUCIAL to solve complex coordination tasks by considering
a traditional concurrent programming problem.

Page 17 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0 2 4
Duration (s)

Crucial
auto-reduce

Crucial

PyWren (SQS)

PyWren
(In�nispan)

PyWren (S3)

(a)

0 10 20 30 40 50
Time (s)

b1

b0

a1

a0

Invocation
S3 read

Compute
Sync

(b)

0 1000 2000
Number of threads

0.00

0.25

0.50

0.75

Ba
rr

ie
rt

im
e

(s)

SNS+SQS
ZooKeeper
Crucial (P)

Crucial
Redis

(c)

Figure 6: (a) Synchronizing a map phase in MapReduce with PyWren, Amazon SQS and CRUCIAL.
(b) Performance breakdown of an iterative task using either multiple stages (a0/a1), or a single stage
with a CRUCIAL barrier (b0/b1). (c) Average time threads spend waiting on a barrier.

Map phase Many algorithms require synchronization at various stages. In MapReduce [38], this
happens between the map and reduce phases, and it is known as shuffle. Shuffling ensures that the
reduce phase starts when all the appropriate data was output in the preceding map phase. Shuffling
the map output is a costly operation in MapReduce, even if the reduce phase is short. For that
reason, when data is small and the reduction operation simple, it is better to skip the reduce phase
and instead aggregate the map output directly in the storage layer [40]. CRUCIAL allows to easily
implement this approach.

In what follows, we compare different techniques to synchronize cloud functions at the end of
a map. Namely, we compare 1. the original solution in PyWren, based on polling S3; 2. the same
mechanism but using the Infinispan in-memory key-value data store; 3. the use of Amazon SQS, as
proposed in some recent works (e.g., [84]); and 4. two techniques based on the Future object available
in CRUCIAL. The first solution outputs a future object per function, then runs the reduce phase. The
second aggregates all the results directly in the DSO layer (called auto-reduce).

We compare the above five techniques by running back-to-back the Monte Carlo simulation in
Listing 1. The experiment employs 100 cloud functions, each doing 100M iterations. During a run,
we measure the time spent in synchronizing the functions. On average, this accounts for 23% of the
total time.

Figure 6a presents the results of our comparison. Using Amazon S3 proves to be slow, and it
exhibits high variability —some experiments being far slower than others. This is explained by the
combination of high access latency, eventual consistency, and the polling-based mechanism. The re-
sults improve with Infinispan, but being still based on polling, the approach induces a noticeable
overhead. Using Amazon SQS is the slowest approach of all. It needs a polling mechanism that
actively reads messages from the remote queue. The solution based on Future objects allows to im-
mediately respond when the results are available. This reduces the number of connections necessary
to fetch the result and thus translates into faster synchronization. When the map output is directly
aggregated in DSO, CRUCIAL achieves even better performance, being twice as fast as the polling
approach atop S3.

Synchronization primitives Cloud functions need to coordinate when executing parallel tasks.
This section evaluates some of the synchronization primitives available in CRUCIAL to this end.

For starters, we study the performance of a barrier when executing an iterative task. In Figure 6b,
we depict a breakdown of the time spent in the phases of each iteration (Invocation, S3 read, Com-
pute, and Sync). The results are reported for 2 cloud functions out of 10 —the other functions behave
similarly.

The breakdown in Figure 6b considers two approaches. The first one launches a new stage of
functions (a0 and a1) at each iteration that do not use the barrier primitive. The second launches

Page 18 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

a single stage of functions (b0 and b1) that run all the iterations and use the barrier primitive to
synchronize. In the first case, data must be fetched from storage at each iteration, while in the second
approach it is only fetched once. Overall, Figure 6b shows that this latter mechanism is clearly faster.
In particular, the total time spent in coordinating the functions is lower when the barrier is used
(Sync).

Figure 6c draws a comparison between two barrier objects available in CRUCIAL and several state-
of-the-art solutions. More precisely, the figure reports the performance of the following approaches:
1. a pure cloud-based barrier, which combines Amazon SNS and SQS services to notify the functions;
2. a ZooKeeper cyclic barrier based on the official double barrier [51] in a 3-node cluster; 3. a non-
resilient barrier using the Redis BLPOP command (“blocking left pop”) on a single server; 4. the default
cyclic barrier available in CRUCIAL, with a single server instance; and 5. a resilient, poll-based (P)
barrier implementing the algorithm in [65] on a 3-node cluster with replication.

To draw this comparison, we measure the time needed to exit 1000 barriers back-to-back for each
approach. An experiment is run 10 times. Figure 6c reports the average time to cross a single barrier
for a varying number of cloud functions.

The results in Figure 6c show that the single server solutions, namely CRUCIAL and Redis, are
the fastest approaches. With 1800 threads, these barriers are passed after waiting 68 ms on average.
The fault-tolerant barriers (CRUCIAL (P) and ZooKeeper) create more contention, incurring a perfor-
mance penalty when the level of parallelism increases. With the same number of threads, passing
the poll-based barrier of CRUCIAL takes 287 ms on average. ZooKeeper requires twice that time. The
solution using Amazon SNS and SQS is an order of magnitude slower than the rest.

It is worth noting the difference between the programming complexity of each barrier. Both
barriers implemented in CRUCIAL take around 30 lines of basic Java code. The solution using Redis
has the same length, but it requires a proper management of the connections to the data store as well
as the manual creation/deletion of shared keys. ZooKeeper substantially increases code complexity,
as programmers need to deal with a file-system-like interface and carefully set watches, requiring
around 90 lines of code. Finally, the SNS and SQS approach is the most involved technique of all,
necessitating 150 lines of code and the use of two complex cloud service APIs.

A concurrency problem Thanks to its coordination capabilities, CRUCIAL can be used to solve com-
plex concurrency problems. To demonstrate this feature, we consider the Santa Claus problem [150].
This problem is a concurrent programming exercise in the vein of the dining philosophers, where
processes need to coordinate in order to make progress. Common solutions employ semaphores and
barriers, while others, actors [18].

(Problem) The Santa Claus problem involves three sets of entities: Santa Claus, nine reindeer and
a group of elves. The elves work at the workshop until they encounter an issue that needs Santa’s
attention. The reindeer are on vacation until Christmas eve, when they gather at the stable. Santa
Claus sleeps, and can only be awakened by either a group of three elves to solve a workshop issue,
or by the reindeer to go delivering presents. In the first case, Santa solves the issues, and the elves go
back to work. In the second, Santa and the reindeer execute the delivery. The reindeer have priority
if the two situations above occur concurrently.

(Solution) Let us now explain the design of a common solution to this problem [18]. Each en-
tity (Santa, elves, and reindeer) is a thread. They communicate using two types of synchronization
primitives: groups and gates. Elves and reindeer try to join a group when they encounter a problem
or Christmas is coming, respectively. When a group is full —either including three elves or nine
reindeer—, the entities enter a room and notify Santa. A room has two gate objects: one for entering
and one for exiting. Gates act like barriers, and all the entities in the group wait for Santa to open the
gate. When Santa is notified, he looks whether a group is full (either of reindeer or elves, prioritizing
reindeer). He then opens the gate and solves the workshop issues or goes delivering presents. This
last operation is repeated until enough deliveries, or epochs, have occurred.

We implemented the above solution in three flavors. The first one uses plain old Java objects
(POJOs), where groups and gates are monitors and the entities are threads. Our second variation is a

Page 19 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Table 3: Santa Claus problem’s completion time (in seconds) on a single machine vs. CRUCIAL.

Threads Threads + DSO CRUCIAL

p50 20.15 20.91 21.97
p99 21.09 22.03 22.66
Overhead − 3.8% 9.0%

refinement of this base approach, where the synchronization objects are stored in the DSO layer. The
conversion is straightforward using the API presented in §3.1. In particular, the code of the objects
used in the POJO solution is unchanged. Only adding the @Shared annotation is required. The last
refinement consists in using CRUCIAL’s cloud threads instead of the Java ones.

(Evaluation) We consider an instance of the problem with 10 elves, 9 reindeer and 15 deliveries
(epochs of the problem). Table 3 presents the completion time for each of the above solutions.

The results in Table 3 show that CRUCIAL is efficient in solving the Santa Claus problem, being
at most 9% slower than a single-machine solution. In detail, storing the group and gate objects in
CRUCIAL induces an overhead of around 4% on the completion time. When cloud threads are used
instead of Java ones, a small extra time is further needed —less than a second. This penalty comes
from the necessary remote calls to the FaaS platform to start computation.

Takeaways The fine-grained synchronization capabilities of CRUCIAL permit cloud functions to
coordinate efficiently. The synchronization primitives available in the framework fit iterative tasks
well and perform better than state-of-the-art solutions at large scale while being simpler to use. This
allows CRUCIAL to solve complex concurrency problems efficiently.

3.4.4 Smile library

The previous section presented the portage to serverless of a solution to the Santa Claus problem.
In what follows, we further push this logic by considering a complex single-machine program. In
detail, we report on the portage to serverless of the random forest classification algorithm available
in the Smile library. Smile [92] is a multi-threaded library for machine learning, similar to Weka [67].
It is widely employed to mine datasets with Java and contains around 165K SLOC. In what follows,
we first describe the steps that were taken to conduct the portage using CRUCIAL. Then, we present
performance results against the vanilla version of the library.

Porting smile.classification.RandomForest The portage consists in adapting the random forest
classification algorithm [23] with the help of our framework. In the training phase, this algorithm
takes as input a structured file (commonly, .csv or .arff) which contains the dataset description.
It outputs a random forest, i.e., a set of decision trees. During the classification phase, the forest
is used to predict the class of the input items. Each decision tree is calculated by a training task
(Callable). The tasks are run in parallel on a multi-core machine during the training phase. During
this computation, the algorithm also extracts the out-of-bag (OOB) precision, that is the forest’s error
rate induced by the training dataset.

To perform the portage, we take the following three steps. First, a proxy is added to stream
input files from a remote object store (e.g., Amazon S3). This proxy lazily extracts the content of
the file, and it is passed to each training task at the time of its creation. Second, the training tasks
are instantiated in the FaaS platform. With CRUCIAL, this transformation simply requires calling a
ServerlessExecutorService object in lieu of the Java ExecutorService. Third, the shared-memory
matrix that holds the OOB precision is replaced with a DSO object. This step requires to change the
initial programming pattern of the library. Indeed, in the original application, the RandomForest class
creates a matrix using the metadata available in the input file (e.g., the number of features). If this

Page 20 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0

50

100

150

200

250

soil
usps

credit-card

click

ru
nn

in
g

tim
e

(s
)

Smile-8
Smile-160
CRUCIAL

(a)

0

50

100

150

200

250

1 10 50 100 200
0.95

0.96

0.97

0.98

0.99

1

ru
nn

in
g

tim
e

(s
)

A
U

C

#trees

(b)

Figure 7: Smile portage. (a) Performance per dataset using 50 trees. (b) Varying the number of trees
for the credit-card dataset [121].

pattern is kept, the application must load the input file to kick off the parallel computation, which is
clearly inefficient. In the portage, we instead use a barrier to synchronize the concurrent tasks. The
first task to enter the barrier is in charge of creating the matrix in the DSO layer.6

For performance reasons, Smile uses Java arrays (mono or multi-dimensional) and not object-
oriented constructs (such as ArrayList). As pointed out previously in §3.1.3, it is not possible to
build proxies for such objects in Java without changing the bytecode generated during compilation.
Thus, the portage necessitates to transform these arrays into high-level objects. These objects are then
replaced with their CRUCIAL counterparts.

Overall, the portage modifies 378 SLOC in the Smile library (version 1.5.3). This is less than 4%
of the original code base to run the random forest algorithm. We also added scripts to deploy and
run the serverless solution in AWS Lambda, and performance benchmarks (see below), for a total
of around 1K SLOC. Notice that the portage does not preclude local (in-memory) execution, e.g., for
testing purpose. This is possible by switching a flag at runtime.

Evaluation results In Figure 7, we compare the vanilla version of Smile to our CRUCIAL portage.
To this end, we use 4 datasets: (soil) is built using features extracted from satellite observations to cat-
egorize soils [59]; (usps) was published by Le Cun et al. [104] and it contains normalized handwritten
digits scanned from envelopes by the U.S. Postal Service; (credit-card) is a set of both valid and fraud-
ulent credit card transactions [121]; (click) is a 1% balanced subset of the KDD 2012 challenge (Task 2)
[69].

We report the performance of each solution during the learning phase. As previously, CRUCIAL

is executed atop AWS Lambda. The DSO layer runs with rf = 2 in a 3-node (4 vCPU, 16 GB of RAM)
Kubernetes cluster. For the vanilla version of Smile, we use two different setups: an hyperthreaded
quad-core Intel i78550U laptop with 16 GB of memory (tagged Smile-8 in Figure 7), and a quad-Intel
CLX 6230 hyperthreaded 80-core server with 740 GB of memory (tagged Smile-160 in Figure 7).7

As expected for small datasets (soil and usps), the cost of invocation out-weights the benefits
of running over the serverless infrastructure. For the two large datasets, Figure 7a shows that the
CRUCIAL portage is up to 5x faster. Interestingly, for the last dataset the performance is 20% faster
than with the high-end server.

In Figure 7b, we scale the number of trees in the random forest, from a single tree to 200. The
second y-axis of this figure indicates the area under the curve (AUC) that captures the algorithm’s
accuracy. This value is the average obtained after running a 10-fold cross-validation with the training
dataset. In Figure 7b, we observe that the time to compute the random forest triples from around 10
to 30 s. Scaling the number of trees helps improving classification. With 200 trees, the AUC of the

6This pattern is reminiscent of a Phaser object in Java.
7In this last case, the JVM executes with additional flags (+XX:+UseNUMA -XX:+UseG1GC) to leverage the underlying

hardware architecture.

Page 21 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0 50 100 150 200 250 300 350
Time (s)

0

200

400

600

�
ro

ug
hp

ut

Node crashes Node joins

Figure 8: Inferences per second performed on a k-means model during 6 minutes. Up to 100 concur-
rent FaaS functions connecting to the shared model on up to 3 DSO nodes with rf = 2. Note the FaaS
cold start at the beginning.

computed random forest is 0.9998. This result is in line with prior reported measures [121] and it
indicates a strong accuracy of the classifier. Figure 7b indicates that training a 200-trees forest takes
around 30 s with CRUCIAL. This computation is around 50% slower with the 160-threads server. It
takes 20 minutes on the laptop test machine (not shown in Figure 7b).

Takeaways Overall, the above results show that the portage is efficient, bringing elasticity and on-
demand capabilities to a traditional monolithic multi-threaded library. We focused on the random
forest classification algorithm in Smile, but other algorithms in this library can be ported to FaaS with
the help of CRUCIAL.

3.4.5 Usability of CRUCIAL

This section evaluates how CRUCIAL simplifies the writing of stateful serverless applications and
their deployment and management in the cloud.

Data availability Our first experiment assesses that CRUCIAL indeed offers high availability to data
persisted in the DSO layer. To this end, the membership of DSO is changed during the execution of
the serverless k-means. Figure 8 shows a 6-minute run during which inferences are executed with
the model trained in §3.4.2. The model is stored in a cluster of 3 nodes with rf = 2. The inferences
are performed using 100 cloud threads. Each inference executes a read of all the objects in the model,
i.e., the 200 centroids.

During the experiment, at 120 s and 240 s, we crash and add, respectively, a storage node to
the DSO layer. Figure 8 shows that our system is elastic and resilient to such changes. Indeed,
modifications to the membership of the DSO layer affect performance but never block the system.
The (abrupt) removal of a node lowers performance by 30%. The initial throughput of the system
(490 inferences per second) is restored 20 s after a new storage node is added.

Notice that handling catastrophic (or cascading) events is possible by running DSO across several
availability zones, or even datacenters. In such cases, SMR can be tailored to accommodate with the
increased latency between data replicas [108]. Evaluating these geo-distributed scenarios is however
outside of the scope of this paper.

Programming simplicity Each of the applications used in the evaluation is initially a single-machine
program. Table 4 lists the modifications that were necessary to move each program to serverless with
CRUCIAL. The differences between the single-machine, parallel code and its serverless counterpart

8Transitive closure of the dependencies of smile.classification.RandomForest in the Smile library.

Page 22 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Table 4: Lines of code changed in each application to move it to FaaS with CRUCIAL.

Application Total lines Changed lines

Monte Carlo 44 2 (4.5%)
Mandelbrot 88 3 (3.4%)
Logistic regression 430 10 (2.3%)
k-means 329 8 (2.4%)
Santa Claus problem 255 15 (5.9%)
Random Forest 8 9882 378 (3.8%)

Table 5: Monetary costs of the experiments

Total time (s) Total cost ($) Iterations cost ($)

Logistic regression Spark 192 0.282 0.111
CRUCIAL 122 0.302 0.154

k-means (k = 25) Spark 168 0.246 0.050
CRUCIAL 87 0.244 0.057

k-means (k = 200) Spark 330 0.484 0.288
CRUCIAL 234 0.657 0.492

are small. In the case of Smile, as mentioned earlier, they mainly come from the use of low-level non-
OOP constructs in the library (e.g., Java arrays). For the other programs, e.g., the logistic regression
algorithm detailed in §3.4.2, the changes account for less than 3%.

Starting from a conventional OOP program, CRUCIAL requires only a handful of changes to port it
to FaaS. We believe that this smooth transitioning can help everyday programmers to start harvesting
the benefits of serverless computing.

Cost comparison Although one may argue that the programming simplicity of serverless comput-
ing justifies its higher cost [74], running an application serverless should not significantly exceed the
cost of running it with other cloud appliances (e.g., VMs).

Table 5 offers a cost comparison between Spark and CRUCIAL based on the experiments in §3.4.2.
The first two columns list the time and cost of the entire experiments, including the time spent in
loading and parsing input data, but not the resource provisioning time. The last column lists the cost
that can be attributed to the iterative phase of each algorithm. To compare fairly the two approaches,
we only consider the pricing for on-demand instances.

With the current pricing policy of AWS [10], the cost per second of CRUCIAL is always higher
than Spark: 0.25 and 0.28 cents per second for 1792 MB and 2048 MB function memory, respectively,
against 0.15 cents per second. Thus, when computation dominates the running time, as in k-means
clustering with k = 200, the cost of using CRUCIAL is logically higher. This difference disappears
when CRUCIAL is substantially faster than Spark (e.g., k = 25).

To give a complete picture of this cost comparison, there are two additional remarks to make here.
First, the solution provided with CRUCIAL using 80 concurrent AWS Lambda functions employs a
larger aggregated bandwidth from S3 than the solution with Spark. This reduces the cost difference
between the two approaches. Second, as pointed in §3.4.1, CRUCIAL users only need to pay for the
execution time of each function, and not the time the cluster remains active. This includes bootstrap-
ping the cluster as well as the necessary trial-and-error processes found, for instance, in machine
learning training or hyper-parameter tuning [154].9

9Provisioning the 11-machine EMR cluster takes 2 minutes (not billed) and bootstrapping requires an extra 4 minutes.
A DSO node starts in 30 seconds.

Page 23 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Takeaways The programming model of CRUCIAL allows to easily write conventional object-oriented
applications for serverless. Starting from a single-machine code, the changes are minimal. In partic-
ular, the distributed shared objects (DSO) layer offers the exact same semantics for state sharing and
synchronization as a conventional multi-threaded library (e.g., java.util.concurrent). Being serverless,
applications written with CRUCIAL are scalable. Moreover, they execute at a comparable cost than
cluster-based solutions without high upfront investment.

4 The Serverless Shell

With the advent of new computing platforms, it is of interest to port legacy software. A successful
portage allows to reuse a code base and benefits from technological advances. One of these software
is the traditional Unix shell [114, 128]. Much of the success of *NIX operating systems comes from this
command-line interpreter. The Unix shell offers a minimalist yet powerful syntax to write programs.
Shell scripting covers many usages, from traditional system administrative tasks to data analytics. It
is particularly efficient to manipulate files, query datasets and execute basic repetitive tasks.

In this section, we detail our adaptation of the Unix shell for serverless using the CRUCIAL frame-
work. The new tool, named the serverless shell (sshell), allows to execute commands remotely in
the serverless platform. Each command runs isolated in the platform as a serverless function. sshell
leverages the simplicity and scalability of serverless computing to give access to large computing
power on-demand and in a pay-per-use manner. It is built around a small set of components that
includes a new inter-process communication layer for serverless. This layer allows to communicate
through synchronization primitives (pipes, rendez-vous) and share data (counters, maps, arrays) at
fine grain. Coupled with a remote storage, shell scripts can conveniently leverage the inherent par-
allelism of serverless computing to process large amount of data.

We evaluate sshell with micro-benchmarks and a large-scale application. sshell requires min-
imal efforts to port a legacy script to serverless. Once adapted, a script has comparable or better
performance than with a high-end server. It is also up to an order of magnitude more cost-efficient
and faster than a cluster-based solution to mine large datasets.

In the follow-up, we explain how to program with sshell (§4.1) then present its internals (§4.2).
The details of our implementation using the CRUCIAL frameowrk follow (§4.2.6). Further, we evalu-
ate sshell in AWS Lambda (§4.3).

4.1 Programming with sshell

sshell is a program to run shell commands in a serverless platform. To invoke it, the programmer
types sshell followed by the command to execute. For instance, the code below lists the directories
available under the root:

1 $> sshell ls -C /
2 RequestId: d6215a3a-a41c-4384-b779-215cfa06b30c
3 Duration: 13 ms Memory Used: 98 MB
4 bin dev home lib64 mnt proc run srv tmp var
5 boot etc lib media opt root sbin sys usr

The first two lines of the output (in light gray) are debugging information. They indicate respec-
tively the identifier of the call in the serverless platform, and the time and memory spent to answer it.
The directories available under / are then listed in the next two lines. This call was executed on AWS
Lambda and thus this corresponds to the content of the Firecracker container where the command
was run [7].

Figure 9 details a more complex example. sshell is used to compute the average size of a web
page by mining part of the Common Crawl dataset produced in April 2021. Calling this script leads
to the following result:

1 $> average
2 50778

Page 24 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 TMP_DIR=/tmp/$(whoami)
2 CCBASE="http://commoncrawl.s3.amazonaws.com"
3 CCMAIN="CC-MAIN-2021-17" # april 2021
4 RANGE="-r 0-10000000"
5 curl -s ${CCBASE}/crawl-data/${CCMAIN}/warc.paths.gz \
6 | zcat | head -n 1000 > ${TMP_DIR}/index
7 average(){
8 while read l; do
9 sshell "curl -s ${RANGE} ${CCBASE}/${l} | 2>/dev/null zcat -q | grep ^Content-Length " &

10 done < ${TMP_DIR}/index | awk ’{ sum += $2 } END { if (NR > 0) print int(sum / NR) }’
11 }

Figure 9: A script using sshell.

In detail, lines 2-3 locate the crawl of interest on the web server. The index of the crawl is then
fetched and stored in a temporary file. Each line of the index is an archive of the web pages crawled
by the Common Crawl foundation. Function average iterates over this index (line 8) and for each
archive invokes a sshell command in parallel (line 9). The command decompresses the archive and
returns the size of the crawled pages using their HTTP headers. These values are then averaged
using awk.

4.2 System design

This section explains how sshell works. We first provide an overview then cover its components in
detail.

4.2.1 Overview

sshell is built around four components: a serverless platform, an executor, a distributed storage
and an inter-process communication layer. The serverless platform executes on-demand isolated
functions over a set of distributed machines. Examples of such platforms include AWS Lambda,
Google Cloud Functions, OpenFaaS and KNative.

When sshell is called with a command at some client machine, it invokes the executor in the
serverless platform. The executor is in charge of executing the command and redirecting its output
to the client. The executor can access any form of distributed storage reachable from the serverless
platform. This includes distributed file systems, key-value stores and remote web resources.

The inter-process communication (IPC) layer allows fine-grained communication and synchro-
nization between sshell invocations. Roughly speaking, this layer is equivalent to the common
IPC layer available in the operating system. It supports the standard pipe operator, and provides
synchronization primitives as well as linearizable shared objects.

4.2.2 Serverless platform

A serverless platform allows to execute user-defined functions at scale in a distributed system. The
platform consists of several workers in charge of executing the functions and a scheduler to orches-
trate them.

A function targets a specific runtime, e.g., Python, and it follows a well-defined signature, such as
“out f(context,in)”. To make a function executable in the platform, the user first uploads it. Once
installed, the function is triggered on-demand by contacting the scheduler. Serverless platforms
generally offer two types of invocation: synchronous and asynchronous. If the output is returned to the
client once the functions completes, the invocation is synchronous. The invocation is asynchronous
when the output is ignored by the client (e.g., if the function returns null).

Functions are stateless, that is they do not keep state from one invocation to another. This comes
from the fact that multiple invocations might not hit the same worker and can occur in parallel.

Page 25 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 gathering(){
2 JOBS=100
3 BARRIER=$(uuid)
4 seq 1 1 $((JOBS-1)) | parallel -n0 sshell --async barrier -n ${BARRIER} await -p ${JOBS}
5 sshell barrier -n ${BARRIER} await -p ${JOBS}
6 }

Figure 10: Synchronization on a barrier.

Invocation are isolated one from another. To achieve this, serverless platforms usually run functions
in a dedicated container or VM.

4.2.3 Executor

The executor is a serverless function installed in the serverless platform. This function takes as input
a shell command to execute. At line 9 in Figure 9, the command starts with “curl -s ${RANGE}..”.
sshell can also pass a file to the executor using the parameter -f FILE.

Once called, the executor spawns a process to execute the command. The standard output (std-
out) of this process is redirected to the stdout of sshell. Similarly, the standard error (stderr) of the
process is the stderr of sshell.

By default, the executor is invoked synchronously in the serverless platform. The content of
stdout and stderr is sent back to the client once the executor terminates. It is also possible to run the
executor in asynchronous mode, using –async, and fully ignore both streams.

4.2.4 Distributed storage

Like other serverless functions, sshell may use any form of distributed storage accessible from the
platform. In particular, it can use cloud storage services using a dedicated client (or simply REST
requests), as well as the remote resources available on the web.

In the following, we consider that the executor has access to such a remote distributed storage.
Access is made through the file system using the mount/unmount interface. As an example, in our
evaluation (§4.3), sshell uses the AWS Elastic File Storage (EFS) and AWS Simple Storage Service
(S3) to read and write data files.

4.2.5 Inter-process communication

Within an operating system, processes communicate through the inter-process communication (IPC)
layer. In particular, shell scripts rely heavily on three mechanisms to communicate: files (>FILE ,
<FILE), named pipes (mkfifo FILE) and anonymous pipes (|).

Files and named pipes are available to sshell invocations using the distributed storage mounted
in the executor. In addition, sshell also offers means to communicate via a new IPC layer for server-
less. This layer is similar to the standard IPC layer as found in an operating system. It consists of
three communication mechanisms: synchronization primitives, linearizable objects and anonymous
pipes. We detail each of these mechanisms in the following.

Synchronization primitives Multiple sshell invocations can synchronize using primitives such as
(cyclic) barriers, countdown latches and rendez-vous. Calling a primitive abides by the following
syntax:

1 $> primitive -n name operation [parameters]

where primitive is the type of the primitive, name denotes the name of the instance and operation
the operation to invoke. The call parameters depend on the operation. For instance, a call to await

Page 26 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 average_stateful(){
2 sshell "counter -n average reset"
3 while read l; do
4 sshell "counter -n average increment -i \$(curl -s ${RANGE} ${CCBASE}/${l} | 2>/dev/null zcat | grep

^Content-Length | awk ’{ sum += \$2 } END { if (NR > 0) print int(sum / NR) }’)" 1> /dev/null &
5 done < ${TMP_DIR}/index
6 wait
7 lines=$(wc -l ${TMP_DIR}/index | awk ’{print $1}’)
8 total_average=$(sshell "counter -n average tally")
9 echo $((total_average/lines))

10 }

Figure 11: Distributed stateful computation.

(lines 5-6 in Figure 10) requires the number of participants (-p $JOBS). In this figure, function gathering
first generates a random name for the barrier (line 4). Then, it invokes sshell 99 times, and each in-
vocation synchronizes on the barrier. Further, gathering also joins the barrier, and once the barrier is
lifted, it returns. In this example, sshell is invoked using GNU parallel [146] and asynchronously
(as no result is expected).

Shared objects sshell also includes a library of shared objects that may be called within a com-
mand. The signature of a call follows the same convention as the one previously described for the
synchronization primitives.

The library provides common data structures (hash tables, red-black trees, lists, arrays and coun-
ters). As detailed in §4.2.6, it is built atop DSO. This library is easily extensible if needed. These
objects are linearizable when called concurrently by multiple sshell instances, that is they behave
as if a single instance had executed all the calls. This is common in concurrent programming and
simplifies the writing of parallel programs.

We illustrate how to use the shared objects library in Figure 11. This script is semantically equiv-
alent to the one in Figure 9. It also averages the sizes of the web pages in the Common Crawl dataset.
Differently from Figure 9, the computation is however executed this time in a stateful manner. To
this end, each sshell command uses a counter named average (line 4 in Figure 11). This counter is
shared among all the sshell invocations that run in parallel. Upon reading a chunk of the dataset,
an invocation takes the average size of the web pages it encounters in the chunk, then increments the
counter accordingly. At the end of the computation, the script divides the value of the counter by the
number of lines in the index to obtain the global average.

Anonymous pipes sshell supports anonymous pipes with the help of a rewriting tool. Depending
on the capabilities of the serverless platform, the | operator is rewritten in two different ways.

If the serverless platform allows direct communication between functions, a socket is used. We
illustrate this case in Figure 12(top), where we rewrite cmdA|cmdB. In this figure, cmdB creates a socket
at port 8080 to receive the output of cmdA (line 1). Then, it adds its address to a rendez-vous object in
the IPC layer. The name of this object is chosen randomly (de41a38e in Figure 12). cmdA awaits for
this information, then connects to the socket at the provided address (line 2).

In case direct communication between functions is forbidden, an anonymous pipe is imple-
mented through the distributed storage layer using the file system interface. This is illustrated in
Figure 12(bot). The rewriting tool first creates a shared file with a random name in the file system.
Then, it rewrites cmdA (line 1) and cmdB (line 2) appropriately using tail and sed. In particular, the
rewriting uses a magic (EOF) to signal the end of the output of cmdA in the shared file.

4.2.6 Implementation

sshell is written in Java atop the CRUCIAL framework. The sources cover around 3K SLOC. This
code base is open and available online [98]. The software is packaged with Maven and includes a na-

Page 27 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 sshell "nc -N -l 8080 | cmdB& rdv de41a38e -1 $IP" &
2 sshell "HOST=$(rdv de41a38e); exec 3<>/dev/tcp/${HOST}/8080; cmdA >&3; echo EOF >&3"

1 sshell "cmdA | awk ’{print \$0}END{print \"EOF\"}’ > /fs/de41a38e" &
2 sshell "tail -n +0 --pid=\$\$ -f --retry /fs/de41a38e 2>/dev/null | { sed \"/EOF/ q\" && kill \$\$;} |

grep -v ^EOF\$ | cmdB"

Figure 12: Rewriting cmdA|cmdB using (top) direct communication, or (bot) the file system.

1 seq 1 1 1000 | parallel -j$JOBS -I,, "sshell \"sleep 10\""
2 seq 1 1 1000 | parallel -j$JOBS -I,, "sshell \"dd if=/dev/zero

of=/efs/large-file-100mb-,,-\${PARALLEL_SEQ}.txt count=1024 bs=102400\""
3 ls /efs | parallel -j$JOBS -I,, "sshell \"echo ,, ; cat /efs/,, /dev/null\""

Figure 13: One-liners used in the evaluation.

tive x86-64 executable built with GraalVM (19.3.0). A native executable is key for performance when
multiple sshell commands are invoked in parallel. The current distribution includes deployment
scripts for AWS Lambda. Porting sshell to another serverless platform requires to rewrite these
scripts, as well as a handful of Java functions in the executor.

The distributed storage layer is implemented using AWS Elastic File Storage (EFS). When the
image is deployed in Lambda, the scripts specify an EFS mounting point in the file system. The inter-
process communication (IPC) layer uses DSO (see §3.2.1). The objects are made available in the shell
using Picocli [120]. The IPC layer operates outside the serverless platform. To use it, the DSO servers
have to be deployed beforehand, for instance using Kubernetes [25]).

The implementation of sshell for Lambda uses two layers [11]. The first layer contains the li-
braries common to all the deployments (e.g., IPC support). The second layer is light-weighted (a
few KBs) and tailored for a specific use case. It includes the parameters specific to a end user (for
instance, the EFS mounting point).

4.3 Evaluation

This section evaluates the performance and cost of sshell. We also compare it against a single-
machine solution and a cluster-based approach (Apache Spark).

4.3.1 Experimental setup

The evaluation takes place in AWS (us-east-1). Unless stated otherwise, experiments are run from a
t2.2xlarge machine (8 vCPUs - 32 GB RAM) located in the same datacenter—called the client. We use
the default parameters for AWS Lambda and AWS Elastic File System (EFS). EFS operates in general
purpose performance mode with default quotas. Each serverless function in Lambda has 1 GB of
memory.

4.3.2 Preliminaries

This section presents preliminary results in which the serverless platform and the distributed storage
are evaluated.

Invocation latency First, we evaluate the cost to invoke sshell in parallel with the code at line 1 in
Figure 13. Figure 14 reports the invocation latency, that is the time spent at the client to execute this

Page 28 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0
2
4
6
8

10
12
14
16
18

20 30 40 60 80 100 200 300 400 500 600 700 800

Ti
m

e
(s

)
parallel jobs

sshell GNU parallel

Figure 14: Invocation latency.

one-liner, for increasing values of $JOBS. Latency is broken down between the time spent in GNU
parallel and executing sshell per se.

In Figure 14, we observe that the more parallel the task is, the less time is spent in invoking
sshell. This is expected since increasing the parallelism reduces the number of sequential calls to
the program. It also shows that the underlying serverless platform (AWS Lambda) scales well.10 On
the other hand, the total time does not decrease in Figure 14 when $JOBS ≥ 100. This comes from the
fact that the client saturates: the performance of parallel drops when the amount of concurrent jobs
is too large for the number of vCPUs.

Download Upload
Sequential 72 MB/s 77 MB/s

Parallel 3418 MB/s 1333 MB/s

Table 6: Peak transfer rates between EFS and Lambda.

Storage performance Table 6 reports the peak transfer rates between EFS and Lambda. The up-
load rate is computed by writing from Lambda to EFS using dd (line 2 in Figure 13). Piping these
files to /dev/null provides the download rate (line 3 in Figure 13). As previously, we increment
progressively variable $JOBS until the system saturates.

The observed peak upload and download rates are respectively 1.333 GB/s and 3.418 GB/s. These
values, obtained with around 100 lambdas, are in-line with the documentation [132].

4.3.3 Micro-benchmarks

This section evaluates sshell against the micro-benchmarks proposed in [125].

Thumbnails The first benchmark parses a set of 1090 images. For each image, it generates a 10 KB
thumbnail with ImageMagick[36]. The input dataset weights 14 GB in total.

Figure 15 presents the benchmark results. The files, both the original images and the thumbnails,
are all stored in EFS. The figure details a comparison against a c5d.24xlarge machine (96 VCPUs, 192
GB RAM). In that case, the files are all local to the machine. At the time of writing, this machine is
the largest (on-demand) instance available in EC2.

In Figure 15, sshell reaches its peak performance with 600 jobs (25 s). This is 14% faster than
with the large machine (right of Figure 15). The large machine delivers its peak performance with
200 parallel jobs, a situation in which it is CPU bound.

For sshell, both the download and compute time shrinks with more parallel jobs. From 10 to
100 parallel jobs, sshell is 4.96x faster. However, as seen in §4.3.2, calling parallel with hundreds
of jobs is expensive, capping the speedup.

10In the experiments, we always operate below the maximum concurrent invocations and invocation rates thresholds of
AWS Lambda.

Page 29 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0
10
20
30
40
50
60
70

10 40 80 100 200 300 400 500 600 700 800

Ti
m

e
(s

)

parallel jobs

Invoke
EFS I/O

Compute

c5
d.2

4x
lar

ge

Figure 15: Thumbnails generation.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0.1 1 10

1/
C

os
t

Speedup

seq
sshella

b
c
de

Figure 16: Port scan analysis – performance vs cost comparison between EC2 and sshell.

Port scan analysis The second benchmark parses a trace of 40 GB that consists of a full Internet scan
of port 80 using zmap. The steps below are taken during the processing of the trace: (1) clean the raw
input data with zannotate; (2) use jq to isolate first, the Internet Protocol (IP), then the Autonomous
System (AS) columns; (3) call pr to merge these two outputs together; and (4) run awk and sort to
count the number of IPs per AS.

Figure 16 presents our results for this benchmark. Running the sequential implementation by the
authors of the benchmark on a t2.2xlarge machine takes 1803 s for a price of $0.19. The other results
in Figure 16 are with a parallel script. Their performance is relative to the sequential implementation
(“seq” in Figure 16), and reported along two dimensions: the x-axis measures the speedup, the y-axis
is the inverse of the cost. For sshell, the cost corresponds to the use of Lambda and EC2. The other
implementations use EC2 only. To compute the cost, we apply a per-request rate for Lambda, and a
per-second billing for EC2.

When the benchmark is run in parallel, the input file is already split into 103 chunks. This pre-
processing phase is not considered in Figure 16. In this figure, configurations (a-e) stand for an c5
on-demand EC2 instance with respectively, 16, 36, 48, 72 and 98 vCPUs. These instances are compute
optimized which match the benchmark.

In Figure 16, we observe that executing the benchmark in parallel is clearly interesting. EC2 con-
figurations offer different trade-offs in terms of price/performance. For instance, the fastest configu-
ration (e) executes the benchmark in 400 s but it is 3x more expensive that the slowest configuration
(a).

In Figure 16, we observe that sshell is clearly a better alternative, being cheaper and faster than a
single-machine solution. The result reported in Figure 16 for sshell are obtained with 100 Lambdas
in parallel. Higher parallelism does not improve significantly performance due to the limited time
each job executes. Interestingly, as serverless providers bill per call, adding more parallelism has no
cost impact, contrary to traditional Infrastructure-as-a-Service solutions.

4.3.4 Large-scale application

In the next experiment, we analyze TBs of data to estimate the popularity of web domains. Our
sshell script mimics the behavior of LinkRun [138], an application that mines the datasets crawled

Page 30 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0
20
40
60
80

100
120
140

100 200 300 400 500 600

Ti
m

e
(m

in
)

parallel jobs

Invoke
S3 I/O

Compute
Sync

Sort

0
5

10
15
20
25
30
35
40

sta
tef

ul

sta
tel

ess

Ti
m

e
(m

in
)

Figure 17: Ranking web domains by popularity.

monthly by the Common Crawl foundation using Apache Spark.
In detail, our script first downloads the web pages in the target dataset, and extracts all the out-

going links. Then, to evaluate the popularity of a domain, the script counts the number of times the
domain is mentioned in each page. These results are aggregated over the whole dataset and sorted
to construct the output.11

The Common Crawl datasets are stored in AWS S3, in the same region as where the experiment
runs (us-east-1). A monthly crawl consists of 56,000 WAT files. Each file is an archive of around
400 MB, for a (compressed) total size of 20.17 TB.

Performance analysis Figure 17 reports the completion time of sshell to execute the above task.
Figure 17(left) presents the performance with increasing levels of parallelism. The performance is
split into five parts: (Invoke) invoking sshell in parallel; (S3 I/O) downloading the WAT archives;
(Compute) extracting then processing these files; (Sync) merging the results between the sshell invo-
cations using the IPC layer; and (Sort) ranking the domains based on their popularity. At maximum
speed, with 400 jobs, sshell completes this task in 28 min. This is close to two times faster than with
200 jobs, and four times faster than with 100 jobs.

Interestingly in Figure 17 (right), sorting the output is always a fast operation (less than 35 s).
This comes from the fact that this computation is run in the IPC layer, following a stateful approach
(see §4.2.5). In the script, each job extracts locally from the archive a map that stores the popularity
of the domains it encountered. The job then merges this local map in a red-black tree stored in the
IPC layer and shared across all jobs (precisely, a meargeable map stored in DSO). The content of this
tree is then extracted to obtain the final output.

It is possible to follow a stateless approach to sort the domains (similarly to Figure 9 wrt. to
Figure 11). The client is then in charge of constructing the final result (e.g., with awk). As seen in
Figure 17 (right), the sorting phase in this case is 13.8x slower than with the stateful approach.

Comparison with LinkRun In Table 7, we compare sshell to the original LinkRun application.
For LinkRun, we indicate the time, cost and dataset size, as reported by its author [138].

SLOC Pricing Time
Dataset size
(compressed)

Linkrun 716 $200-260 26-48 h 17.62 TB
sshell 51 $19 28 min 20.17 TB

Table 7: Comparison with LinkRun.

While providing functionalities close to the original application, our code is more compact, thanks
to the minimalist syntax of shell. It is also 56-103x faster to compute the popularity of the web do-
mains. This substantial improvement in speed translates into a large cost difference.

11Such a measure of centrality (number of mentions) is a common indicator of the popularity of a node in a graph [47].

Page 31 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

5 Extensions

In what follows, we present three extensions to the CRUCIAL framework and more specifically to the
DSO layer. These extensions are particularly useful in the context of serverless computing. They are
part of the Infinispan code base, and allow to use non-volatile memory to store persistent data (§5.1),
compile DSO servers to native for faster execution (§5.2), scale up and down the DSO layer without
moving data across servers (§5.3), and add a new operator for the kubernetes containers orchestrator
(§5.4).

5.1 Support for non-volatile memory

Modern data stores and big data analytics platforms such as Infinispan are written in Java [19, 22, 39,
87, 110, 129, 156, 161]. Because they manipulate large amount of persistent data, these systems can
greatly benefit from the recent technological advances in Non-Volatile Main Memory (NVMM) [72].
Unfortunately, to date, accessing efficiently NVMM from the Java language is still an open challenge.

To access NVMM from Java, two designs exist so far. With the external design, NVMM remains
outside the Java heap. The Java virtual machine (JVM) accesses it through a file system [78, 94, 159], or
using the Java native interface (JNI) [113, 115]. This design is inefficient due to the cost of converting
data back and forth between the NVMM and the Java representations. With the integrated design, the
JVM stores plain Java objects in NVMM and the application directly accesses them with read and
write instructions [139, 158]. While this design avoids the conversion cost, it also has a fundamental
flaw: the JVM has to run a garbage collector (GC) in NVMM because it now contains Java objects.

Collecting a dataset at the scale of NVMM, that is hundreds of GBs to TBs, is expensive.12 For
instance, we show in [91] that collecting just 80 GB divides the completion time by 3. Moreover,
persistent and volatile objects have different life cycles. Applications often contain many allocation
and deletion sites for volatile objects. On the contrary, the deletion of a persistent object is often
related to a specific event, e.g. discarding a tuple in a relational database. Such events are rare,
explicit, and trigger well-defined paths in the application. As we confirm in [91], this makes the
number of deletion sites small, and thus the use of a GC for NVMM superfluous.

To remedy these problems, we propose a direct NVMM access, as with the integrated design,
but without collecting persistent objects at runtime. Implementing this design is challenging because
the Java language was designed for garbage-collected objects. To address this challenge, we revisit
how to manage persistent objects for Java in the NVMM era. We introduce a decoupling principle
between the data structure of a persistent object and its representation in the Java world. Based
on this principle, a persistent object now consists of two parts: a data structure stored off-heap in
NVMM, and a proxy that remains in volatile memory. The data structure holds the fields of the
persistent object, while the volatile proxy provides the methods that manipulate them. Because we
store the persistent data structure outside the Java heap, using our own memory layout, they are not
collected at runtime. Our design also removes the cost of converting objects by leveraging a JVM
interface that inlines the low-level instructions that access NVMM directly in the Java methods.

We implement our decoupling principle in the J-NVM framework. J-NVM is entirely written in
Java and it only requires the addition of three NVMM-specific instructions to the Hotspot JVM. Our
framework offers to the programmer a low-level interface that focuses on performance and a high-
level interface that trades performance for usability. The low-level interface defines the methods that
allow a proxy to access the persistent data structure. The high-level interface additionally provides
failure-atomic blocks, that is blocks of code executed entirely or not at all [30, 34, 35, 105, 116, 152].
To ease programming, J-NVM includes a code generator which takes as input a legacy Java class and
automatically decomposes it into a persistent data structure and a volatile proxy. Our framework also
includes the J-PDT library which contains optimized persistent data structures (e.g., arrays, maps and
trees) implemented directly atop the low-level library. Internally, these data structures do not rely on
failure-atomic blocks for performance, yet they remain consistent when a crash occurs.

12The smallest Optane DC holds 128 GB of persistent memory.

Page 32 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

We have evaluated J-NVM with micro-benchmarks and by implementing several persistent back-
ends for the Infinispan data store [102]. Our evaluation using a TPC-B like workload [149] as well as
YCSB [31] shows that:

• Both the low-level and the high-level interfaces systematically outperform the external design.
In YCSB, the low-level interface is at least 10.5x faster than using ext4 atop NVMM or the PCJ
library [115], which relies on the native PMDK library [115], except in a single case where it is
only 3.6x faster.

• While the failure-atomic blocks of the high-level interface offer an all-around solution, J-PDT,
with its hand-crafted persistent data types, executes up to 65% faster. Compared to a volatile
implementation, J-PDT is only 45-50% slower.

• Integrating NVMM in the language runtime hurts performance due to the cost of garbage-
collecting the persistent objects. For a Redis-like application written with go-pmem [57], in-
creasing the persistent dataset from 0.3 GB to 151 GB multiplies the completion time of YCSB-F
by 3.4

In the rest of this section, we explain briefly how to program with J-NVM (§5.1.1). Then, we
present some evaluation results (§5.1.2). The interested reader may consult [91] for further details.

5.1.1 Programming with J-NVM

Overview J-NVM decomposes a persistent object into a persistent data structure and a volatile
proxy. Persistent data structures live in NVMM, outside the Java heap. Proxies are regular Java ob-
jects that intermediate access to the persistent data structures. They implement the PObject interface,
are instantiated on-demand (e.g., when a persistent object is dereferenced) and managed by the Java
runtime. The above decoupling principle avoids running a garbage collector on persistent objects.
Based on it, J-NVM implements a complete developer-friendly interface that offers failure-atomic
blocks. To construct this interface, J-NVM reuses ideas and principles proposed in prior works, but
assembles them differently. Our framework uses a class-centric programming model, that is the prop-
erty of durability is attached to a class, and not to an instance. As common with prior frameworks
(e.g., Thor [95]), a persistent object is live by reachability from a set of user-defined persistent roots.
J-NVM garbage collects the unreachable persistent objects at recovery, but avoids running a GC at
runtime for performance. Instead, objects are explicitly freed by the developer.

Example usage As illustrated in Figure 18, programming with J-NVM is straighforward. Any class
annotated with @Persistent is durable. For instance, this is the case of Simple in Figure 18 (line 1). To
run the application, the developer compiles the sources as usual, then passes a code generator over
the bytecode files (the .class files). Any class marked with @Persistent is transformed.13 The code
generator replaces the volatile fields with persistent ones (lines 3 and 4 in Figure 18). Accordingly,
accesses to such fields are replaced by persistent accesses (lines 8, 9, 12, 27 and 28). If a field is marked
transient (line 5), the code generator keeps it in volatile memory, making no transformation. The
developer may use transient fields to optimize the application, e.g., to deduce a volatile value from
the persistent state. In addition to the above transformations, the code generator also wraps methods
into failure-atomic blocks. The fa="non-private" argument of @Persistent at line 1 specifies that
each non private method has to be wrapped. In the Main class of Figure 18, the application manipu-
lates a Simple object. It starts by creating (or retrieving) a persistent memory region of 1 MB called
"/mnt/pmem/simple" (line 17). A persistent memory region contains by default the persistent map
JNVM.root. This map associates names with the root persistent objects used by the application. The
main method uses this map to retrieve the persistent object associated with the name "simple". If
the object does not exist (line 19), the method allocates a new Simple object and records it in the map
(line 20). Further, main retrieves the simple object, increments its x field, sets its y field and prints its

13If the sources are unavailable, instead of relying on the @Persistent annotation, the tool takes as input an explicit list
of classes to transform.

Page 33 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

1 @Persistent(fa="non-private")
2 class Simple {
3 PString msg;
4 int x;
5 transient int y;
6
7 Simple(int x) {
8 this.x = x;
9 this.msg = new PString("Hello, NVMM!");

10 }
11
12 void inc() { x++; }
13 }
14
15 class Main {
16 static void main(String args[]) {
17 JNVM.init("/mnt/pmem/simple", 1024*1024);
18
19 if(!JNVM.root.exists("simple"))
20 JNVM.root.put("simple", new Simple(42));
21
22 Simple s = (Simple)JNVM.root.get("simple");
23
24 s.inc();
25 s.y = 42;
26
27 System.out.println(s.x);
28 System.out.println(s.msg);
29
30 JNVM.root.put("simple", new Simple(24));
31 JNVM.free(s.msg);
32 JNVM.free(s);
33 }
34 }

Figure 18: How to use J-NVM.

content (lines 22-28). Line 30 creates a second Simple object and inserts it in the root map. The code
then frees the first object still referenced by the local variable s (lines 31-32).

5.1.2 Evaluation

In this section, we present the performance of J-NVM in the YCSB benchmark and provide a detailed
comparison against other existing approaches.

Hardware and system The test machine is a quad-Intel CLX 6230 hyperthreaded 80-core server
with 128 GB of DRAM and 512 GB of Intel Optane DC (128 GB per socket). It runs Linux 4.19 with
gcc 8.3.0, glibc 2.28 and Hotspot 8u232-b03 (commit c5ca527b0afd) configured to use G1. The patch
for Hotspot that adds the three NVMM-specific instructions to Unsafe (namely, pwb, pfence and
psync) contains 200 SLOC. Besides this patch, J-NVM, J-PDT and J-PFA that all together implement
our NVMM object-oriented programming framework, encompass about 4000 SLOC. NVMM runs
in App Direct mode and is formatted with the ext4 file system. In this mode, software has direct
byte-addressable access to NVMM.

Infinispan Our experiments use Infinispan, an open-source industrial-grade data store maintained
by Red Hat. Infinispan exposes a cache abstraction to the application that supports advanced oper-
ations, such as transactions and JPQL requests. We use Infinispan version 9.4.17.Final [103], which
contains around 600,000 SLOC. Infinispan runs either with the application (embedded mode), or as
a remote storage (server mode). Unless stated otherwise, we use the embedded mode during our
experiments and cache up to 10% of the data items. As seen in [91], a larger ratio would significantly

Page 34 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

0
100
200
300
400
500
600

A B C D F

T
hr

ou
gh

pu
t

(K
op

s/
s)

J-PDT J-PFA FS PCJ

Figure 19: The YCSB benchmark.

harm performance. Accordingly, we also cap the volatile heap to 22 GB. This size gives the best per-
formance with our YCSB workload on a file system backend atop NVMM (precisely, less then 3.7%
of the total time is spent in GC in Figure 19).

Persistent backends We evaluate different persistent backends for Infinispan: (J-PDT) A backend
using the J-PDT standalone library. (J-PFA) A backend built with the failure-atomic blocks of J-NVM.
(FS) The default file system backend of Infinispan using NVMM formatted in ext4. (PCJ) An imple-
mentation that relies on the Persistent Collections for Java library [115]. PCJ uses the native PMDK
1.9.2 library [116] through the Java Native Interface.

YCSB Benchmark We compare J-NVM against the other approaches by running version 0.18 of the
Yahoo! Cloud Serving Benchmark (YCSB) [31] YCSB is a key-value store benchmark that consists of
six workloads (A to F) with different access patterns. A client can execute six types of operations
(read, scan, insert, update and rmw) on the key-value store. Workload A is update-heavy (50% of
update), B is read-heavy (95% of read) and C is read-only. Workload D consists of repeated reads
(95% of read) followed by insertions of new values. In the workload E, the client executes short
scans. Workload F is a mix of read and read-modify-write (rmw) operations. We evaluate all work-
loads except E. Infinispan only provides scan through the JPQL interface, hence workload E is not
comparable with the others that use a direct interface. If not otherwise specified, YCSB executes in
sequential mode (single-threaded client).

YCSB associates a key with a data record that contains fixed length fields. Unless otherwise
stated, we use the default parameters of 3M records, each having 10 fields of 100 B. YCSB runs with
the default access patterns (namely, zipfian and latest). Compared to a uniform distribution, these
patterns improve the cache hit ratio, and makes thus the FS backend more efficient.

J-PDT, J-PFA and PCJ all require to use persistent keys and values in YCSB. To achieve this, we
modified the Infinispan client, which represent less than 30 SLOC from the vanilla version.

Results. Figure 19 presents the throughput of the YCSB benchmark with the different persistent
backends. In this figure, we observe first that J-PDT systematically outperforms the other approaches.
Except in workload D, J-PDT is consistently 10.5x faster than FS. In comparison to PCJ, the difference
ranges between 13.8x and 22.7x faster. In workload D, J-PDT executes at least 3.6x more operations
per second than FS and PCJ. The low performance of FS comes from the cost of marshalling persistent

Page 35 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Figure 20: Illustration of the performance improvements in recent Infinispan releases—(top) native
compilation, (bot) anchored keys.

objects back and forth between their file system and Java representations. In Figure 19, the lower
performance of PCJ is due to the Java native interface that requires heavy synchronization to call a
native method [113]. J-NVM avoids this cost by leveraging the Unsafe interface, which does not have
to synchronize the whole JVM to escape the Java world. Overall, the results in Figure 19 outline that
NVMM drastically changes the way to access persistent data from the Java runtime: while JNI calls
or marshalling/unmarshalling operations were negligible with slow storage devices, this is no more
the case with NVMM. They must be avoided where possible. In Figure 19, J-PFA also systematically
outperforms FS and PCJ for the same reasons as mentioned above. Nevertheless, J-PDT is still up to
65% faster. This result shows that hand-crafted crash-consistent data structures can be more efficient
than a generic approach.

5.2 Ahead-of-time compilation

One of the concerns of using Java in high-density environments is the overhead of the Java Virtual
Machine (JVM) both in terms of memory usage as well as in startup and warming-up time. Most
of the blame for this doesn’t actually lie in the JVM itself, which is still one of the best available
optimizing virtual machines, but in the typical dynamic approach of many development frameworks
which rely on runtime class reflection, annotation scanning and bytecode enhancements.

However, the overhead of the JVM can still be drastically reduced by using ahead-of-time compi-
lation (AOT), where Java source code can be directly compiled to machine code. Oracle has recently
released the GraalVM project, which, among other things, delivers a "native-image" tool which gen-
erates a native binary from a Java application which does not require a JVM at runtime. This kind of
native binary is ideal for applications which need very fast startup time with low memory overhead,
which is typical in short-lived execution scenarios like FaaS.

Real-world examples have demonstrated a 100-fold speedup in startup time for a microservice-
style application (from 9 seconds to less than 1/10 of a second) and a 10-fold reduction in RSS (Res-
ident Set Size) memory usage (from 250MB to 25MB). Because the native-image tool imposes some
limitations on the kind of code that can be compiled and executed, traditional Java applications and
libraries need to be altered.

While it was possible to compile Infinispan to native code with very few modifications, the de-
cision was made to replace a lot of the code that performed injection and marshalling at runtime
with completely refactored components that performs these tasks at compile-time. For example, the
reflection-based Java class marshalling was substituted with a "Protocol Buffers" [151] implementa-

Page 36 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

tion which generates serialization/deserialization code during the compilation phase.
Figure 20(top) illustrates the (drastic) performance improvements brought by the native compi-

lation. In particular, and as expected, the boot time is reduced to a very small fraction of what it was
previously (top right figure).

Results Every variant of Infinispan (e.g., embedded and server), as well as the Java-based clients
now compiles ahead-of-time. This work is now part of the main development tree [147]

5.3 Anchored keys

Infinispan’s horizontal scaling has always been driven by three main goals: (i) high-availability, i.e.
the ability to recover from the loss of one ore more nodes by keeping multiple copies of data across
the cluster; (ii) balancing load evenly across all nodes by ensuring that data is evenly distributed
across the cluster, and (iii) allowing intelligent clients to retrieve data from the nodes owning it in a
single hop.

As pointed out in §3.2.1, the key to achieving the above goals has been consistent-hashing: Nodes
which own a particular item of data are computed based on a hashing algorithm known by both
the server and the clients. When a topology change happens (nodes joining/leaving the cluster), the
consistent-hash mapping of data to nodes (called ownership) is recomputed according to the avail-
able nodes. If necessary, entries are moved around to ensure high-availability and even distribution
and load-balancing.

While the rebalancing algorithm tries to perform as little moving of data as possible and in a
non-blocking fashion, it still may have a non-negligible impact on throughput and latency while it
is running. For this reason a new optional data distribution algorithm, named "Anchored Keys", has
been implemented since Infinispan 11. This algorithm has been designed to minimize the data which
is exchanged by nodes in case of a topology change. When anchored keys are enabled, Infinispan no
longer uses consistent-hashing to determine data ownership but uses the last (most recently added)
node in the cluster. However, in order for all nodes to know which node owns a specific key, the own-
ership information needs to be propagated to all nodes. This information is stored in the extended
metadata of each entry, which is then replicated to all nodes.

The current implementation of anchored keys sacrifices availability by not maintaining multi-
ple copies of each item, but this will be amended in a future version by maintaining one or more
symmetrical copies of each node.

Figure 20(bot) illustrates the interest of using anchored keys to scale horizontally Infinispan with-
out paying the price of moving data across servers. The time to bootstrap a server is reduced (bottom
left figure), with a low impact on performance (bottom right figure).

Results The new anchored-keys module is now part of Infinispan 11 and will evolve to add more
capabilities, such as high-availability [147].

5.4 Kubernetes operator

Provisioning, monitoring, scaling and upgrading an Infinispan cluster is a complex undertaking,
which involves configuring multiple subsystems, including memory and CPU resources, network-
ing, security and persistent storage. Some of the functionalities required by these operations, such as
node discovery, clustered configuration, automatic data rebalancing, was already handled by Infin-
ispan’s internal clustering and configuration logic, but it still required a lot of manual uplift. Kuber-
netes is a managed, containerized orchestrator, which has been designed and developed to handle
most of the complexity of a distributed system involving multiple components, each with their own
lifecycle and management requirements. Kubernetes offers infrastruture, APIs and policies that can
handle the most common distributed deployments. However, for systems which do not fit into the
standard behaviours, an extensible layer, known as the Operator Lifecycle Management (for short,

Page 37 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Operator), has been implemented. It is therefore possible to install Operators, which are custom ap-
plications whose task is to monitor the global Kubernetes configuration namespace for specific types
of Custom Resources (CRs).

Infinispan Operator, extends the Kubernetes API with Custom Resource Definitions (CRDs) for
deploying and managing Infinispan clusters on Kubernetes. To interact with Infinispan Operator,
Kubernetes users apply CRs through the Kubernetes Dashboard, or directly by using the kubectl
client. Infinispan Operator listens for Infinispan CRs and automatically provisions native resources,
such as StatefulSets and Secrets, that the Infinispan deployment requires. Infinispan Operator also
configures Infinispan services according to the specifications in Infinispan CRs, including the number
of pods for the cluster and backup locations for cross-site replication. A single operator installation
can manage multiple Infinispan clusters in separate namespaces. Each time a user applies CRs to
modify the deployment, the operator applies the changes globally to all Infinispan clusters. Infinis-
pan Operator reconciles CRs such as the Cache CR with resources on an Infinispan cluster. Bidirec-
tional reconciliation synchronizes CRs with changes that are made to Infinispan resources through
the Infinispan Console, command line interface (CLI), or other client application and vice versa. For
example, if a cache is created through the Infinispan Console then Infinispan Operator adds a declar-
ative Kubernetes representation. If the Kubernetes cluster has a Prometheus and Grafana installation,
then the operator can also automatically setup metrics scraping and provides a default dashboard for
monitoring Infinispan.

Results Infinispan Operator allows to integrate Infinispan into the Kubernetes ecosystem. This
benefits to (serverless and traditional) applications that use it to persist and cache data within a
unified modern container-based ecosystem.

6 Exploratory work

Exploratory work is an important part of a European-funded RIA because it investigates and devel-
ops ideas that advance the state of the art both in research and industry. This section explains the
exploratory work that has been conducted during the project. It also provides indications on how to
decide whether this work will make it into a future version of CRUCIAL.

This work is risky in the sense that not all of it will become part of the reference architecture. Such
risk-taking is necessary in all successful research. Success of this work is to be measured not on how
much of the work becomes part of the reference architecture, but on whether sufficiently innovative
exploration is done and on whether the reference architecture itself is sufficiently innovative.

6.1 T4.2 - Degradable objects

In a distributed system, data is replicated for availability and to boost performance (typically, with
more read replicas). When replicated data is mutable, it is necessary to maintain consistency with
the help of a concurrency control mechanism. Due to the CAP and FLP impossibility results [45, 58],
orchestrating data replicas is notably difficult and moreover subject to conflicting requirements. On
the one hand, strong consistency maintains the sequential invariants of the applications and is well
understood. On the other hand, performance and scalability suggest to use of a weaker consistency
criterion, yet this requires considerable programming skills. A key challenge is thus to find a good
balance between the programming model of the target distributed application, and its deployment
constraints and performance requirements.

To reconcile programming model and data consistency, Task T4.2 investigates the notion of degrad-
able object. A degradable object is a mutable shared data type whose behavior varies to match the
requirements of an application. More precisely, a degradable object is a hierarchy of object types all
having the same signature, but with varying pre- and post-conditions for their operations and that
abide by different consistency criteria. Each level of this hierarchy is called a degradation level. The

Page 38 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

key principle is that the degradation level L+1 requires less synchrony to implement than the level L.
Thus, it is more efficient and more scalable, but also less convenient to program with.

The programmer specifies the degradation level to use according both to the invariants of the
application and its performance requirements. Finding the appropriate level for a given application
pattern is an iterative process. At first glance, a programmer may use strong consistency, then later
refines her choices based on the fact that some interleavings and/or inconsistencies are acceptable.
Our key insight here is that this iterative process will offer a principled and pedagogical approach to
understand and use (weak to strong) data consistency in distributed applications.

With more details, our efforts have been conducted so far on three fronts.
• First, we are collaborating with the H2020 LightKone project [93] on introducing a new com-

munication primitive in AntidoteDB [14]. AntidoteDB is a distributed database of conflict-free
replicated data types (CRDTs). In the traditional CRDT approach, operations that are mutating
a replica are executed in the background, outside the critical path. Their side effect (aka., the ef-
fector [134]) is then propagated eventually to all the replicas, for instance an epidemic protocol.
Our new primitive will maintain this behavior, but will also offer better properties if needed
(e.g., on the delivery order of effectors). The end goal is to allow some operations to execute
under stricter consistency conditions than strong eventual consistency, the default criteria of
CRDTs [136].

• Our second effort is on the specification and definition of degradable objects. We investigate the
link between the specification of a sequential data type and the need for process synchroniza-
tion. Typically, process synchronization is measured by the consensus power of a given data
type. The consensus power is the largest number of processes that are able to solve consensus
with this data type and registers. Starting from base shared objects, we are investigating how
consistency degradation reduces the consensus power.

• The consensus power is formulated with linearizable objects, that is, in the classical shared
memory model. As a consequence, this hierarchy does not fully capture the need for synchro-
nization in a distributed message-passing system. To close this gap, we investigate alternative
definitions to characterize process synchronization. In particular, our investigation covers the
k-set agreement hierarchy and the link between failure detectors and quorums of data replicas
[53].

Results We are currently writing a research article covering the notions of consistency degradation
and its interest wrt. both strong and weak consistency [81]. A prototype library of degradable objects
is also being implemented [80]. Preliminary results show a up to 10x improvement over regular
objects in the Apache Cassandra key-value store.

6.2 T4.3 - Just-right synchronization

The classical way of maintaining shared objects strongly consistent is state-machine replication (SMR)
[131]. In SMR, an object is defined by a deterministic state machine, and each replica maintains its
own local copy of the machine. An SMR protocol coordinates the execution of commands at the
replica, ensuring that they stay in sync. This requires to execute a sequence of consensus instances
each agreeing on the next state-machine command. The resulting system is linearizable, providing
an illusion that each command executes atomically throughout the system.

Strong consistency is necessary to help transitioning legacy code from shared-memory to server-
less architecture. As pointed out in §3.2.1, it also helps the programmer to use a distributed program-
ming framework by providing a familiar semantic. For both of these reasons, it was a key concern
when developping CRUCIAL.

On the other hand, it is well-known that the above classical SMR scheme limits scalability. To
sidestep this performance problem and further scale the size of the data sets that CRUCIAL is able
to process, we investigated (i) how to improve the scalability of SMR with leaderless consensus, and

Page 39 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

(ii) the design of an efficient atomic multicast protocol to deal with partial replication. These two
lines of work are detailed below.

6.2.1 Leaderless consensus

To date, SMR protocols do not scale, that is when more replicas are added to the system, the per-
formance of the replicated service degrades. This situation results from the conjunction of several
pitfalls:

• First of all, a large spectrum of protocols, e.g., Paxos [88], Raft [112] or Zab [77], funnel com-
mands through a leader (aka. primary) replica. This approach increases latency for clients far
away from the leader and decreases availability because if the leader fails, the system halts
to elect a new one. To mitigate these drawbacks, leaderless approaches [101, 108] allow each
replica to contact a quorum of its peers to execute a command.

• A second concern is that many standard solutions rely on large quorums to make progress. For
instance, in a system of n replicas, Fast Paxos [90] accesses at least 2n

3 replicas, EPaxos [108] 3n
4 ,

and Mencius [101] contacts them all. Large quorums harms system reliability and scalability
because more replicas have to participate to the ordering of each command.

• A last concern is the communication delay to execute a command. To minimize service la-
tency SMR protocols should leverage non-conflicting commands, that is commands which are
not concurrent to any other non-commuting command. These commands are frequent in dis-
tributed applications [26, 33] and can execute in a single round-trip [89].

Refining the above observations, we have introduced a set of desirable requirements for SMR: Re-
liability, Optimal Latency and Leaderlessness (ROLL), We have shown that attaining all the ROLL
properties is subject to a trade-off between fault-tolerance and scalability. More specifically, in a
system of n processes, the ROLL theorem states that every leaderless SMR protocol that tolerates f
failures must contact at least (n− (n− f)

2) processes to execute a command in a single round-trip.
Simultaneous failures and/or asynchrony periods are however a rare event. Leveraging this fact,

we have proposed a novel SMR protocol named Atlas which, based on the ROLL theorem, is optimal.
In particular, Atlas offers two distinguishable unique features.

• First, it executes a command by contacting the closest
⌊ n

2

⌋
+ f processes. For small values of f ,

this implies that the protocol scales.
• The protocol applies commands using a fast path that completes after one round trip, or a

slow path, which completes after two round trips. We introduce a new condition that allows
commands to take the fast path even in the presence of conflicts. In particular, when f = 1, the
protocol always takes the fast path.

We have experimentally compared Atlas against Paxos [88], EPaxos [108] and Mencius [101] on
Google Cloud Platform using the YCSB benchmark [32]. Our results show that our approach consis-
tently outperforms these protocols. In particular, the protocol scales when f is small in the sense that
adding more nodes close to the clients improves latency.

Results The Atlas protocol is detailed in the proceedings of the Eurosys 2020 conference [42]. Its
code base [43] is available upon request. In a recent work, that appeared in the Information Process-
ing Letter [144], we study the correctness of the Egalitarian Paxos protocol. The work on the ROLL
theorem [52] was accepted to DISC 2020.

6.2.2 Atomic multicast

Atomic multicast is a communications primitive that allows a group of processes to receive messages
in an acyclic delivery order. This primitive is a useful building block for distributed storage systems
that enforce strong consistency properties. As an example, it is used in Infinispan to implement
distributed transactions. The main difference with atomic broadcast, which serves a similar purpose,
is that a message can be addressed to a subset of the processes. To be scalable, atomic multicast

Page 40 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

protocols must be genuine, that is only the destination group of a message should be involved in its
ordering.

The standard fault-tolerant genuine solution layers Skeen’s multicast protocol on top of Paxos to
replicate each destination group. Recent improvements decrease the latency of this standard solution
by adding a parallel speculative execution path. Under normal operation, the standard protocol can
deliver multicast message in 6 communication delays and such an optimized version in 4 communi-
cation delays.

Standard protocols employ the Paxos consensus protocol as a blackbox. Departing from this tra-
ditional way of guaranteeing fault-tolerance, we propose a new solution that weaves Paxos together
with Skeen’s multicast. The resulting white-box multicast protocol embeds its own replication logic,
enabling message ordering and delivery in 3 communication delays under normal operation.

Our protocol offers better theoretical performance. We have experimentally assessed that such
characteristics pay-off in practice. We implemented our protocol in the same framework as Skeen’s
and its optimized variation and conducted a comparative performance analysis of the three proto-
cols. Our protocol offer better latency than prior works (up to 2x faster than the optimized Skeen
variation). It also sustains a much higher number of concurrent client requests, thanks to its lower
message complexity.

Results The work on white-box atomic multicast [60] was presented at DSN 2019. Its implementa-
tion is open source [61].

7 State of the Art

Serverless computing brings cost-efficiency and elasticity to software development. This new paradigm
has gained traction recently and many works have been proposed in this area. In what follows, we
cover runtimes (§7.1), programming frameworks (§7.2) and storage (§7.3) for cloud functions. The
bottom of this section (§7.4) focuses on (serverless and non-serverless) solutions to the problem of
stateful distributed computation. Table 8 outlines our survey, comparing CRUCIAL to other existing
serverless systems that address the problem of state sharing and coordination.

7.1 Runtimes

Serverless computing has appealing characteristics, based on simplicity, high scalability and fine
grained execution. It has seduced both industry [10, 107, 118] and academia [64]. This enthusiasm
has also led to a blossom of open-source systems (e.g., [1–4, 64] to cite a few).

At core, a cloud function runtime is in charge of maintaining the user-defined functions, execut-
ing them upon request. It must ensure strong isolation between function instances and low startup
latency for performance. Many works propose to tackle these two central challenges.

Micro-kernels [100] offer a solid basis to quickly kick-off a function and attain sub-millisecond
startup time. Catalyser introduces the sfork system call to reuse the state of a running sandbox.
Similarly, Firecracker [7] makes containers more lightweight and faster to spawn. SOCK [111] is a
serverless-specialized system that uses a provisioning mechanism to cache and clone function con-
tainers. SAND [8] exploits function interaction in FaaS to improve the performance applications.
The system relaxes isolation at the application level, enabling functions from the same application
to share memory and communicate through a hierarchical message bus. This allows better latency
and resource efficiency when combining functions. Faasm [137] offers similar guarantees using a
language-agnostic runtime built atop WebAssembly. User functions use all the same substrate to ex-
ecute, allowing fast initialization. They can access a distributed key-value store cached locally and
shared across functions located on the same physical machine.

Two recent works [63, 75] coincide with our view that existing runtimes do not support mutable
shared state and coordination across cloud functions. Hellerstein et al. [63] underline that the model is

Page 41 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

System Shared state Synchronization Durability Consistency

PyWren Object store coarse-grained replication weak
ExCamera rendezvous rendezvous — —
Ripple composition composition — —
Pocket/Crail multi-tiered coarse-grained ephemeral —
Cloudburst FaaS + cache coarse-grained replication weak
Faasm shared memory fine-grained — —-

CRUCIAL DSO fine-grained replication strong

Table 8: Serverless solutions for state sharing and coordination.

a data-shipping architecture that imposes indirect communication and hinders coordination. Jonas
et al. [75] highlight the lack of adequate storage for fine-grained operations and the inability to coor-
dinate functions at fine granularity.

7.2 Programming frameworks

Several works that address the above two challenges confront them from a function composition
perspective: a scheduler orchestrates the execution of stateless functions and shares information be-
tween them.

Many public cloud services support function composition. AWS allows creating state machines
with Step Functions [12]. IBM Composer [50] offers a similar solution. Google Cloud Composer [119]
allows to easily create and run a DAG of tasks in the cloud. Azure Durable Functions [107] enables
to programmatically coordinate function calls. AWS has its own Amazon States Language to define
the state machines. Unfortunately, the JSON-based language may become complicated for complex
workflows. IBM’s solution facilitates coding with a JavaScript API that is later on transformed into
a state machine. While both enable state combinations, the expressiveness is very limited. Google
Cloud Composer is based on Apache Airflow. It runs a per-user dedicated server that acts as a
scheduler. Composition is limited to a DAG of tasks, which is inherently less expressive than state
machines. Azure Durable Functions is the most complete solution among all, allowing to directly
write imperative code. Asynchronous calls to functions are expressed in C# permitting a function to
wait explicitly prior results.

All the above services struggle to execute embarrassingly-parallel tasks [16, 54]. To sidestep this
limitation, PyWren [74] pioneered the idea to use FaaS for bulk synchronous parallel (BSP) compu-
tations. The paper shows the elasticity and scalability of FaaS and demonstrates with a base Python
prototype how to run MapReduce workloads. PyWren uses a client-workers architecture where state-
less functions read and write data to cloud storage (mainly Amazon S3). Numpywren [133] is a
framework for linear algebra computations over cloud functions. Like with PyWren, functions are
managed as a pool of stateless workers and tasks are managed in a queue. IBM-PyWren [130] evolves
the PyWren model with new features and enhancements. Locus [124] enhanced PyWren for analytics
computation on top of cloud functions. It focuses on the shuffling phase of the MapReduce scheme
and combines cheap but slow storage with fast but expensive storage to explore a cost-performance
trade-off. ExCamera [48] is another system atop FaaS, more focused on video encoding and low
latency. Its computing framework (mu) is designed to run thousands of threads (as an abstraction
for cloud functions) and manages inter-thread communication through a rendezvous server. gg [49]
keeps mu’s line for running serverless parallel threads but taken to a broader audience.

Ripple [76] is a programming framework to take single-machine applications and allow them
to benefit from serverless parallelism. Users rely on a simple interface to express the high-level
dataflow of their applications. Ripple automates resource provisioning and handles fault tolerance by
eagerly detecting straggler tasks. With the user definition, the framework is able to apply heuristics
to abstract data partitioning, task scheduling, resource provisioning and fault tolerance. Before the
full computation run, the framework performs a series of dry runs to test and find the best resource

Page 42 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

provisioning for the job.
Some recent works attempt to build theoretical foundations for programming with cloud func-

tions. Jangda et al. Jangda et al. [73] propose a concise calculus to capture the operational semantics
of serverless computing. Baldini et al. [15] detail the serverless trilemma: functions should be black
boxes, composition should be also a function and invocations should not be double-billed. They
present a solution to the trilemma for sequential compositions called IBM Sequences.

7.3 Storage

Many frameworks focus on cloud function scheduling and coordination, while using disaggregated
storage to manage data dependencies. In particular, they opt to write shared data to slow, highly-
scalable storage [74, 130, 133]. To hide latency, they perform coarse-grained accesses, resort to in-
memory stores, or use a combination of storage tiers [124].

Pocket [85] is a distributed data store that scales on demand to tightly match the space needs of
serverless applications. It leverages multiple storage tiers and right-sizes them offline based on the
application requirements. Crail [143] presents the NodeKernel architecture with similar objectives.
These two systems are designed for ephemeral data, which are easy to distribute across a cluster.
They do not use a distributed hash table that would require data movement when the cluster topol-
ogy changes, but instead use a central directory. Both systems scale down to zero when computation
ends.

InfiniCache [153] is an in-memory cache built atop cloud functions. The system exploits FaaS to
store objects in a fleet of ephemeral cloud functions. It uses erasure coding and a background rejuve-
nation mechanism to maintain data available despite the churn. Similarly to a traditional distributed
in-memory cache, InfiniCache is designed to hold objects but not to facilitate their update.

The above works do not allow fine-grained updates to a mutable shared state. Such a feature can
be abstracted in various ways. CRUCIAL chooses to represent state as objects, and keeps the well-
understood semantics of linearizability. This approach is in-line with the simplicity of serverless
computing.

Existing storage systems such as Memcached [46], Redis [126], or Infinispan [103] cannot readily
be used as a shared object layer. They either provide too low-level abstractions or require server-side
scripting. Coordination kernels such as ZooKeeper [68] can help synchronizing serverless functions.
However, their expressiveness is limited and they do not support partial replication [41, 79]. We
show these problems in §3.4.

CRUCIAL borrows the concept of callable objects from CRESON [145]. It simplifies its usage
(@Shared annotation), provides control over data persistence and offers a broad suite of synchro-
nization primitives. While CRUCIAL implements strong consistency, some systems [135, 141, 148]
rely instead on weak consistency, trading ease of programming for performance. Weak consistency
has been used to implement distributed stateful computation in FaaS, as detailed in the next section.

7.4 Distributed stateful computation

Cloudburst [142] is a stateful serverless computation service. State sharing across cloud functions
is built atop Anna [157], an autoscaling key-value store that supports a lattice put/get CRDT data
type. Cloudburst offers repeatable read and consistent snapshot consistency guarantees for function
composition—something that is not achievable, for instance, when using AWS Lambda in conjunc-
tion with S3 (i.e., computing x + f (x) is not possible if x mutates).

Cirrus [28] is a machine learning framework that leverages cloud functions to efficiently use com-
puting resources. This system specializes in iterative training tasks and asynchronous stochastic gra-
dient descent. The initial motivation for Cirrus is much in line with CRUCIAL, however the solution
is quite different. Cirrus relies on a distributed data store that does not allow custom shared objects
and/or computations. Furthermore, distributed workers cannot coordinate as they do in CRUCIAL.

Page 43 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

Besides serverless systems, there exist many frameworks for machine clusters that target stateful
distributed computation.

Ray [109] is a recent specialized distributed system mainly targeting AI applications (e.g., Rein-
forcement Learning). It offers a unified interface for both stateless task-parallel and stateful actor-
based computations. Applications use both types combined and the system runs a single dynamic
execution engine. Ray achieves high-scalability with a bottom-up distributed scheduler and fault-
tolerance using a chain-replicated key-value store. Its architecture is based on cluster provisioning
and does not fit the serverless model. CRUCIAL shares Ray’s motivation for the need of a special-
ized system that combines stateful and stateless computations. However, Ray couples both models
in the same system and is built for a provisioned resource environment where stateless tasks and
actors live co-located. CRUCIAL is built with serverless in mind and separates the two types of com-
putation. Our system uses the highly scalable capabilities of FaaS platforms for stateless tasks and
a layer of shared objects for data sharing and coordination. The programming model is also conse-
quently different: while Ray exposes interfaces to code tasks and actors, CRUCIAL uses a traditional
shared-memory model where concurrent tasks are expressed as threads.

Other systems with a focus on stateful computations, such as Dask and PyTorch, usually build on
low-level technologies (e.g., MPI) to communicate among nodes. These frameworks rely on clusters
with known topology and struggle to scale elastically. Such a design is at odds with the FaaS model,
where functions are forbidden to communicate directly.

Specialized distributed big data batch processing frameworks, like MapReduce, are available as a
service in the cloud (e.g. AWS EMR). We explore such alternatives in the evaluation section (§3.4.2),
where we compare against Apache Spark.

Page 44 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

8 Conclusion

This document presents CRUCIAL, a powerful system to write efficient serverless programs. CRUCIAL

was developped in the context of CloudButton, a joint European effort to simplify data analytics and
data processing with serverless technologies.

CRUCIAL offers a simple interface to serverless, allowing to write (or port) effortlessly parallel
code for this new environment. It is structured into a compute tier running atop a FaaS platform
and a dedicated in-memory distributed storage tier (DSO). We demonstrate how to use CRUCIAL in
the context of data-intensive applications (e.g., bulk processing, parallel processing, ML). CRUCIAL

allows to move to serverless existing parallel shared-memory code bases in a few modifications. The
performance (and costs) are on par with a cluster of high-end servers running a dedicated complex
software (such as Apache Spark).

This document also presents the serverless shell (sshell), an adaptation of the Unix shell for
serverless. sshell brings the massive copmutation power of the cloud to regular shell scripts.

In addition, this document presents the recent additions to the distributed shared object (DSO)
layer of CRUCIAL: a library to use non-volatile memory in Java, a support for native compilation, as
well as, a new kubernetes operator.

Last, we covered the exploratory work conducted during the CloudButton project in WP4. Part
of this exploratory work may be included into future versions of the CRUCIAL framework.

Page 45 of 56

H2020 825184 RIA
XX/XX/2022 CloudButton

References

[1] Serverless functions for kubernetes - fission, 2016. URL https://fission.io/.

[2] Kubeless, 2016. URL https://kubeless.io/.

[3] Openfaas, 2016. URL https://www.openfaas.com/.

[4] Apache openwhisk is a serverless, open source cloud platform, 2016. URL https://
openwhisk.apache.org/.

[5] lambda-maven-plugin. https://github.com/SeanRoy/lambda-maven-plugin, 2019.

[6] https://github.com/crucial-project, 2020.

[7] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer,
Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight virtualization for serverless
applications. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI
20), pages 419–434, Santa Clara, CA, February 2020. USENIX Association. ISBN 978-1-939133-
13-7. URL https://www.usenix.org/conference/nsdi20/presentation/agache.

[8] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, Andre Beck,
Paarijaat Aditya, and Volker Hilt. Sand: Towards high-performance serverless computing. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC
’18, pages 923–935, Berkeley, CA, USA, 2018. USENIX Association. ISBN 978-1-931971-44-7.
URL http://dl.acm.org/citation.cfm?id=3277355.3277444.

[9] Amazon. Aws simple storage service. https://aws.amazon.com/s3, 2008. retrieved Aug. 2019.

[10] Amazon. Aws lambda. https://states-language.net/spec.html, 2014. retrieved Aug. 2019.

[11] Amazon. Aws lambda layer. https://docs.aws.amazon.com/lambda/latest/dg/
configuration-layers.html, 2014.

[12] Amazon. Aws step functions. https://aws.amazon.com/step-functions, 2016.

[13] Amazon. Aws glue. https://aws.amazon.com/glue/, 2017. retrieved Aug. 2019.

[14] AntidoteDB. https://www.antidotedb.eu.

[15] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy, Rodric Rab-
bah, Philippe Suter, and Olivier Tardieu. The serverless trilemma: Function composition for
serverless computing. In Proceedings of the 2017 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, Onward! 2017, page 89–103,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450355308. doi:
10.1145/3133850.3133855. URL https://doi.org/10.1145/3133850.3133855.

[16] Daniel Barcelona-Pons, Pedro García-López, Álvaro Ruiz, Amanda Gómez-Gómez, Gerard
París, and Marc Sánchez-Artigas. Faas orchestration of parallel workloads. In Proceed-
ings of the 5th International Workshop on Serverless Computing, WOSC ’19, page 25–30, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450370387. doi:
10.1145/3366623.3368137. URL https://doi.org/10.1145/3366623.3368137.

[17] Daniel Barcelona-Pons, Pierre Sutra, Marc Sánchez-Artigas, Gerard París, and Pedro
García-López. Stateful serverless computing with <span class="smallcaps smallercapi-
tal">crucial. ACM Trans. Softw. Eng. Methodol., 31(3), mar 2022. ISSN 1049-331X. doi:
10.1145/3490386. URL https://doi.org/10.1145/3490386.

Page 46 of 56

https://fission.io/
https://kubeless.io/
https://www.openfaas.com/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://github.com/SeanRoy/lambda-maven-plugin
https://github.com/crucial-project
https://www.usenix.org/conference/nsdi20/presentation/agache
http://dl.acm.org/citation.cfm?id=3277355.3277444
https://aws.amazon.com/s3
https://states-language.net/spec.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://aws.amazon.com/step-functions
https://aws.amazon.com/glue/
https://www.antidotedb.eu
https://doi.org/10.1145/3133850.3133855
https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/3490386

H2020 825184 RIA
XX/XX/2022 CloudButton

[18] Mordechai Ben-Ari. How to solve the santa claus problem. Concurrency: Practice and Experience,
10, 2001. doi: 10.1002/(SICI)1096-9128(199805)10:63.0.CO;2-2.

[19] Shamim Bhuiyan, Michael Zheludkov, and Timur Isachenko. High Performance In-Memory Com-
puting with Apache Ignite. Lulu.com, 2017. ISBN 1365732355.

[20] Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the Presence of Failures.
ACM Transactions on Computers Systems, 5(1):47–76, January 1987. ISSN 0734-2071. doi: 10.
1145/7351.7478. URL http://doi.acm.org/10.1145/7351.7478.

[21] Stephen Blum. Amazon sns vs pubnub: Differences for pub/sub. https://www.pubnub.com/
blog/2014-08-21-amazon-sns-pubnub-differences-pubsub/, 2014.

[22] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan, Nicolas
Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Aravind Menon, Samuel
Rash, Rodrigo Schmidt, and Amitanand Aiyer. Apache hadoop goes realtime at facebook. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD’11,
2011.

[23] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN 0885-6125. doi:
10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

[24] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to
implement adaptable systems. In Proceedings of the Adaptable and extensible component systems,
2002.

[25] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg, omega,
and kubernetes. Queue, 14(1):10:70–10:93, January 2016. ISSN 1542-7730.

[26] Michael Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Systems. In
Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[27] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew M Zhang, and Randy Katz. A case for
serverless machine learning. In Workshop on Systems for ML and Open Source Software at NeurIPS,
2018.

[28] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz. Cirrus: A
serverless framework for end-to-end ml workflows. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’19, page 13–24, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450369732. doi: 10.1145/3357223.3362711.

[29] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications:
A comprehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

[30] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala,
and Steven Swanson. Nv-heaps: Making persistent objects fast and safe with next-generation,
non-volatile memories. In Proceedings of the conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’11. ACM, 2011.

[31] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the Symposium on Cloud
Computing, SoCC’1. ACM, 2010.

[32] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with YCSB. In Symposium on Cloud Computing (SoCC),
2010.

Page 47 of 56

http://doi.acm.org/10.1145/7351.7478
https://www.pubnub.com/blog/2014-08-21-amazon-sns-pubnub-differences-pubsub/
https://www.pubnub.com/blog/2014-08-21-amazon-sns-pubnub-differences-pubsub/
https://doi.org/10.1023/A:1010933404324

H2020 825184 RIA
XX/XX/2022 CloudButton

[33] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Fur-
man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson C.
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szy-
maniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s Globally-
Distributed Database. In Symposium on Operating Systems Design and Implementation (OSDI),
2012.

[34] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Efficient algorithms for per-
sistent transactional memory. In Proceedings of the Symposium on Parallelism in Algorithms and
Architectures, SPAA’18. ACM, 2018.

[35] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent memory and the rise of uni-
versal constructions. In Proceedings of the EuroSys European Conference on Computer Systems,
EuroSys’20. ACM, 2020.

[36] John Cristy. Imagemagick, 1990. URL https://imagemagick.org/.

[37] Databricks. spark-perf. https://github.com/databricks/spark-perf, 2014.

[38] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492.
URL https://doi.org/10.1145/1327452.1327492.

[39] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s highly available key-value store. In Proceedings of the Symposium on Oper-
ating Systems Principles, SOSP’7. ACM, 2007.

[40] David J. DeWitt and Michael Stonebraker. MapReduce: A major step back-
wards, 2008. DatabaseColumn Blog. http://www.databasecolumn.com/2008/01/
mapreduce-a-major-step-back.html.

[41] Tobias Distler, Christopher Bahn, Alysson Bessani, Frank Fischer, and Flavio Junqueira. Ex-
tensible distributed coordination. In Proceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15, pages 10:1–10:16, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3238-5. doi: 10.1145/2741948.2741954. URL http://doi.acm.org/10.1145/2741948.2741954.

[42] Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and
Pierre Sutra. State-machine replication for planet-scale systems. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys ’20, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450368827. doi: 10.1145/3342195.3387543. URL https:
//doi.org/10.1145/3342195.3387543.

[43] Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and
Pierre Sutra. State-machine replication for planet-scale systems. https://github.com/
imdea-software/VCD-broadcast, 2020. retrieved Aug. 2020.

[44] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. Efficient replication via times-
tamp stability (extended version). CoRR, abs/2104.01142, 2021. URL https://arxiv.org/abs/
2104.01142.

[45] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. ISSN 0004-5411. doi:
10.1145/3149.214121. URL http://doi.acm.org/10.1145/3149.214121.

[46] Brad Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5–, August 2004.

Page 48 of 56

https://imagemagick.org/
https://github.com/databricks/spark-perf
https://doi.org/10.1145/1327452.1327492
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://doi.acm.org/10.1145/2741948.2741954
https://doi.org/10.1145/3342195.3387543
https://doi.org/10.1145/3342195.3387543
https://github.com/imdea-software/VCD-broadcast
https://github.com/imdea-software/VCD-broadcast
https://arxiv.org/abs/2104.01142
https://arxiv.org/abs/2104.01142
http://doi.acm.org/10.1145/3149.214121

H2020 825184 RIA
XX/XX/2022 CloudButton

[47] Santo Fortunato, Marián Boguñá, Alessandro Flammini, and Filippo Menczer. Approximating
pagerank from in-degree. In William Aiello, Andrei Broder, Jeannette Janssen, and Evangelos
Milios, editors, Algorithms and Models for the Web-Graph, pages 59–71, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-78808-9.

[48] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubramaniam,
William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith Winstein. En-
coding, fast and slow: Low-latency video processing using thousands of tiny threads. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI’17), 2017.

[49] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis,
Matei Zaharia, and Keith Winstein. From laptop to lambda: Outsourcing everyday jobs to thou-
sands of transient functional containers. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 475–488, Renton, WA, July 2019. USENIX Association. ISBN 978-1-939133-03-8.
URL https://www.usenix.org/conference/atc19/presentation/fouladi.

[50] The Apache Software Foundation. Openwhisk composer. https://github.com/apache/
openwhisk-composer, 2017.

[51] The Apache Software Foundation. Zookeeper barrier recipe, 2019. URL https://zookeeper.
apache.org/doc/current/recipes.html#sc_recipes_eventHandles.

[52] Tuanir França and Pierre Sutra. Leaderless State-Machine Replication: Specification, Proper-
ties, Limits. 2020. to appear.

[53] Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure detector abstraction. ACM
Comput. Surv., 43(2):9:1–9:40, February 2011. ISSN 0360-0300. doi: 10.1145/1883612.1883616.
URL http://doi.acm.org/10.1145/1883612.1883616.

[54] Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel Barcelona Pons, Álvaro
Ruiz Ollobarren, and David Arroyo Pinto. Comparison of faas orchestration systems. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion),
pages 148–153. IEEE, 2018.

[55] Pedro García-López, Aleksander Slominski, Simon Shillaker, Michael Behrendt, and Barnard
Metzler. Serverless end game: Disaggregation enabling transparency, 2020.

[56] Simson L. Garfinkel. An evaluation of amazon’s grid computing services: Ec2, s3, and
sqs. Technical Report TR-08-07, Harvard Computer Science Group, 2007. URL http://nrs.
harvard.edu/urn-3:HUL.InstRepos:24829568.

[57] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and Pratap Subrahmanyam.
go-pmem: Native support for programming persistent memory in go. In Proceedings of the
USENIX Annual Technical Conference, ATC’20, 2020.

[58] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[59] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PLOS ONE, 11(4):1–31, 04 2016. doi: 10.1371/
journal.pone.0152173. URL https://doi.org/10.1371/journal.pone.0152173.

[60] Alexey Gotsman, Anatole Lefort, and Gregory V. Chockler. White-box atomic multicast (ex-
tended version). CoRR, abs/1904.07171, 2019. URL http://arxiv.org/abs/1904.07171.

[61] Alexey Gotsman, Anatole Lefort, and Gregory V. Chockler. White-box atomic multicast. https:
//github.com/imdea-software/atomic-multicast, 2020. retrieved Aug. 2020.

Page 49 of 56

https://www.usenix.org/conference/atc19/presentation/fouladi
https://github.com/apache/openwhisk-composer
https://github.com/apache/openwhisk-composer
https://zookeeper.apache.org/doc/current/recipes.html#sc_recipes_eventHandles
https://zookeeper.apache.org/doc/current/recipes.html#sc_recipes_eventHandles
http://doi.acm.org/10.1145/1883612.1883616
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829568
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829568
https://doi.org/10.1371/journal.pone.0152173
http://arxiv.org/abs/1904.07171
https://github.com/imdea-software/atomic-multicast
https://github.com/imdea-software/atomic-multicast

H2020 825184 RIA
XX/XX/2022 CloudButton

[62] Red Hat. Reliable group communication with jgroups. http://jgroups.org/manual/#TOA,
2015.

[63] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith, Vikram
Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing: One step forward, two
steps back. In CIDR 2019, 9th Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings, 2019. URL http://cidrdb.org/cidr2019/
papers/p119-hellerstein-cidr19.pdf.

[64] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Serverless computation with open-
lambda. In Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Computing, Hot-
Cloud’16, pages 33–39, Berkeley, CA, USA, 2016. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=3027041.3027047.

[65] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier synchronization.
Int. J. Parallel Program., 17(1):1–17, February 1988. ISSN 0885-7458. doi: 10.1007/BF01379320.
URL https://doi.org/10.1007/BF01379320.

[66] C. A. R. Hoare. Monitors: An operating system structuring concept. Commun. ACM, 17(10):
549–557, October 1974. ISSN 0001-0782. doi: 10.1145/355620.361161. URL https://doi.org/
10.1145/355620.361161.

[67] G. Holmes, A. Donkin, and I. H. Witten. Weka: a machine learning workbench. In Proceedings
of ANZIIS ’94 - Australian New Zealnd Intelligent Information Systems Conference, pages 357–361,
1994.

[68] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper: Wait-free
Coordination for Internet-scale Systems. In USENIX Annual Technical Conference, USENIX ATC.
USENIX Association, 2010.

[69] Tencent Inc. Kdd cup - 2012. https://www.openml.org/d/1220, 2014.

[70] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Serving deep learning mod-
els in a serverless platform. CoRR, abs/1710.08460, 2017. URL http://arxiv.org/abs/1710.
08460.

[71] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of strong shared
memory primitives. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC’94, pages 151–160, 1994. doi: 10.1145/197917.198079.

[72] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven Swan-
son. Basic Performance Measurements of the Intel Optane DC Persistent Memory Module,
2019.

[73] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. Formal foundations of server-
less computing. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi: 10.1145/3360575.
URL https://doi.org/10.1145/3360575.

[74] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. Occupy the
cloud: Distributed computing for the 99%. In Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC’17, 2017. doi: 10.1145/3127479.3128601.

[75] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qi-
fan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph

Page 50 of 56

http://jgroups.org/manual/#TOA
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://dl.acm.org/citation.cfm?id=3027041.3027047
http://dl.acm.org/citation.cfm?id=3027041.3027047
https://doi.org/10.1007/BF01379320
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/355620.361161
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://www.openml.org/d/1220
http://arxiv.org/abs/1710.08460
http://arxiv.org/abs/1710.08460
https://doi.org/10.1145/3360575

H2020 825184 RIA
XX/XX/2022 CloudButton

Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson. Cloud programming sim-
plified: A berkeley view on serverless computing. Technical Report UCB/EECS-2019-3, EECS
Department, University of California, Berkeley, Feb 2019. URL http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2019/EECS-2019-3.html.

[76] Shannon Joyner, Michael MacCoss, Christina Delimitrou, and Hakim Weatherspoon. Ripple:
A practical declarative programming framework for serverless compute, 2020.

[77] Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance broad-
cast for primary-backup systems. In International Conference on Dependable Systems and Networks
(DSN), 2011.

[78] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli, and Vijay
Chidambaram. SplitFS: Reducing software overhead in file systems for persistent memory. In
Proceedings of the Symposium on Operating Systems Principles, SOSP’19. ACM, 2019.

[79] Babak Kalantari and André Schiper. 14th International Conference Distributed Computing and
Networking, chapter Addressing the ZooKeeper Synchronization Inefficiency. ICDCN. Springer
Berlin Heidelberg, 2013.

[80] Boubacar Kane and Pierre Sutra. Degradability: a Simplified Approach to Data Consistency.
https://git.overleaf.com/5e25ea7dcf314c000109a114, 2020. retrieved Aug. 2020.

[81] Boubacar Kane and Pierre Sutra. A library of degradable objects for Apache Cassandra. https:
//github.com/BoubacarKaneTSP/Application, 2020. retrieved Aug. 2020.

[82] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In 29th Annual ACM Symposium on Theory of Computing,
STOC, 1997.

[83] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Gris-
wold. An Overview of AspectJ. In 15th European Conference on Object-Oriented Programming,
ECOOP, 2001.

[84] Youngbin Kim and Jimmy Lin. Serverless data analytics with Flint. CoRR, abs/1803.06354,
2018. URL http://arxiv.org/abs/1803.06354.

[85] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos
Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 18), pages 427–444, Carlsbad,
CA, 2018. USENIX Association. ISBN 978-1-931971-47-8. URL https://www.usenix.org/
conference/osdi18/presentation/klimovic.

[86] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2), April 2010.

[87] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2), April 2010.

[88] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst., 1998.

[89] Leslie Lamport. Generalized Consensus and Paxos. Technical Report MSR-TR-2005-33, Mi-
crosoft Research, 2005.

[90] Leslie Lamport. Fast Paxos. Distributed Computing, 2006.

Page 51 of 56

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://dx.doi.org/10.1007/978-3-642-35668-1_31
https://git.overleaf.com/5e25ea7dcf314c000109a114
https://github.com/BoubacarKaneTSP/Application
https://github.com/BoubacarKaneTSP/Application
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
http://dl.acm.org/citation.cfm?id=646158.680006
http://arxiv.org/abs/1803.06354
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic

H2020 825184 RIA
XX/XX/2022 CloudButton

[91] Anatole Lefort, Yohan Pipereau, Kwabena Amponsem, Pierre Sutra, and Gaël Thomas. J-NVM:
off-heap persistent objects in java. In Robbert van Renesse and Nickolai Zeldovich, editors,
SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, pages 408–423. ACM, 2021. doi: 10.1145/3477132.3483579. URL
https://doi.org/10.1145/3477132.3483579.

[92] Haifeng Li. Smile. https://haifengl.github.io, 2014.

[93] LightKone. https://www.lightkone.eu.

[94] Linux. Direct access for files. URL https://www.kernel.org/doc/Documentation/
filesystems/dax.txt.

[95] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari, A. C. Myers, M. Day,
and L. Shrira. Safe and efficient sharing of persistent objects in thor. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data. ACM, 1996.

[96] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, March 1982. ISSN 0018-9448. doi: 10.1109/TIT.1982.1056489.

[97] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1996. ISBN 1558603484.

[98] Aurèle Mahéo and Pierre Sutra. The Serverless Shell, 2021. URL https://github.com/
crucial-project/serverless-shell.

[99] Aurèle Mahéo, Pierre Sutra, and Tristan Tarrant. The serverless shell. In Kaiwen Zhang, Abde-
louahed Gherbi, Nalini Venkatasubramanian, and Luís Veiga, editors, Middleware ’21: Proceed-
ings of the 22nd International Middleware Conference: Industrial Track, Virtual Event / Québec City,
Canada, December 6 - 10, 2021, pages 9–15. ACM, 2021. doi: 10.1145/3491084.3491426. URL
https://doi.org/10.1145/3491084.3491426.

[100] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi
Yasukata, Costin Raiciu, and Felipe Huici. My vm is lighter (and safer) than your container.
In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, page 218–233,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350853. doi:
10.1145/3132747.3132763. URL https://doi.org/10.1145/3132747.3132763.

[101] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius: Building Efficient Repli-
cated State Machine for WANs. In Symposium on Operating Systems Design and Implementation
(OSDI), 2008.

[102] Francesco Marchioni and Manik Surtani. Infinispan Data Grid Platform. Packt Publishing Ltd,
2012.

[103] Francesco Marchioni and Manik Surtani. Infinispan Data Grid Platform. Packt Publishing Ltd,
2012.

[104] Ofer Matan, Henry S. Baird, Jane Bromley, Christopher J. C. Burges, John S. Denker,
Lawrence D. Jackel, Yann Le Cun, Edwin P. D. Pednault, William D. Satterfield, Charles E.
Stenard, and Timothy J. Thompson. Reading handwritten digits: A zip code recognition
system. Computer, 25(7):59–63, July 1992. ISSN 0018-9162. doi: 10.1109/2.144441. URL
https://doi.org/10.1109/2.144441.

[105] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. Pronto: Easy and Fast Per-
sistence for Volatile Data Structures. In Proceedings of the conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’20. ACM, 2020.

Page 52 of 56

https://doi.org/10.1145/3477132.3483579
https://haifengl.github.io
https://www.lightkone.eu
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://github.com/crucial-project/serverless-shell
https://github.com/crucial-project/serverless-shell
https://doi.org/10.1145/3491084.3491426
https://doi.org/10.1145/3132747.3132763
https://www.packtpub.com/big-data-and-business-intelligence/infinispan-data-grid-platform
https://doi.org/10.1109/2.144441

H2020 825184 RIA
XX/XX/2022 CloudButton

[106] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J.
Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache
spark. Journal of Machine Learning Research, 17(34):1–7, 2016. URL http://jmlr.org/papers/
v17/15-237.html.

[107] Microsoft. Azure durable functions. https://functions.azure.com, 2016.

[108] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There Is More Consensus in Egal-
itarian Parliaments. In Symposium on Operating Systems Principles (SOSP), 2013.

[109] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A dis-
tributed framework for emerging ai applications. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’18, pages 561–577, Berkeley, CA, USA,
2018. USENIX Association. ISBN 978-1-931971-47-8. URL http://dl.acm.org/citation.cfm?
id=3291168.3291210.

[110] Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline, Joseph Niemiec, and Jeff Markham.
Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing with Apache Hadoop 2.
Addison-Wesley Professional, 1st edition, 2014. ISBN 0321934504.

[111] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea Arpaci-Dusseau,
and Remzi Arpaci-Dusseau. SOCK: Rapid task provisioning with serverless-optimized con-
tainers. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 57–70, Boston,
MA, July 2018. USENIX Association. ISBN 978-1-931971-44-7. URL https://www.usenix.org/
conference/atc18/presentation/oakes.

[112] Diego Ongaro and John K. Ousterhout. In Search of an Understandable Consensus Algorithm.
In USENIX Annual Technical Conference (USENIX ATC), 2014.

[113] Oracle. Java Native Interface Specification. Java SE 14 edition, 2020.

[114] Elliott I. Organick. The Multics System: An Examination of Its Structure. MIT Press, Cambridge,
MA, USA, 1972. ISBN 0-262-15012-3.

[115] Persistent Collections for Java. URL https://github.com/pmem/pcj.

[116] Persistent Memory Development Kit, 2018. URL https://pmem.io/pmdk.

[117] Google Cloud Platform. Bigquery. https://cloud.google.com/bigquery/, 2010. retrieved
Aug. 2019.

[118] Google Cloud Platform. Cloud functions. https://cloud.google.com/functions/, 2016. re-
trieved Aug. 2019.

[119] Google Cloud Platform. Cloud composer. https://cloud.google.com/composer, 2018. re-
trieved March. 2020.

[120] Remko Popma. Picocli, 2017. URL https://picocli.info.

[121] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating probability with un-
dersampling for unbalanced classification. In 2015 IEEE Symposium Series on Computational
Intelligence, pages 159–166, 2015.

[122] The CloudButton project. D3.3 - Serverless Compute Engine Reference Implementation, 2022.

[123] The CloudButton project. D5.3 - CloudButton Toolkit Reference Implementation, 2022.

Page 53 of 56

http://jmlr.org/papers/v17/15-237.html
http://jmlr.org/papers/v17/15-237.html
https://functions.azure.com
http://dl.acm.org/citation.cfm?id=3291168.3291210
http://dl.acm.org/citation.cfm?id=3291168.3291210
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://github.com/pmem/pcj
https://pmem.io/pmdk
https://cloud.google.com/bigquery/
https://cloud.google.com/functions/
https://cloud.google.com/composer
https://picocli.info

H2020 825184 RIA
XX/XX/2022 CloudButton

[124] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow: Scalable analyt-
ics on serverless infrastructure. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 193–206, Boston, MA, 2019. USENIX Association. ISBN 978-1-
931971-49-2. URL https://www.usenix.org/conference/nsdi19/presentation/pu.

[125] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia. POSH: A data-aware shell.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 617–631. USENIX Asso-
ciation, July 2020. ISBN 978-1-939133-14-4.

[126] Redis. https://redis.io/, 2009.

[127] Redis. Replication, 2019. URL https://redis.io/topics/replication.

[128] Dennis M. Ritchie and Ken Thompson. The unix time-sharing system. Commun. ACM, 17(7):
365–375, July 1974. ISSN 0001-0782.

[129] Haytham Salhi, Feras Odeh, Rabee Nasser, and Adel Taweel. Open source in-memory data
grid systems: Benchmarking hazelcast and infinispan. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering, ICPE ’17, page 163–164, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450344043. doi: 10.1145/3030207.
3053671. URL https://doi.org/10.1145/3030207.3053671.

[130] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-López. Serverless data an-
alytics in the ibm cloud. In Proceedings of the 19th International Middleware Conference Industry,
Middleware ’18, pages 1–8, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-6016-6. doi:
10.1145/3284028.3284029. URL http://doi.acm.org/10.1145/3284028.3284029.

[131] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Comput. Surv., 22(4):299–319, 1990. ISSN 0360-0300. doi: 10.1145/98163.98167.

[132] Amazon Web Services. Amazon efs quotas and limits, 2021. URL https://docs.aws.amazon.
com/efs/latest/ug/limits.html#limits-fs-specific.

[133] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman, Ion Stoica,
Benjamin Recht, and Jonathan Ragan-Kelley. numpywren: serverless linear algebra. CoRR,
abs/1810.09679, 2018. URL http://arxiv.org/abs/1810.09679.

[134] Marc Shapiro and Pierre Sutra. Database consistency models. In Encyclopedia of Big Data
Technologies. 2019. doi: 10.1007/978-3-319-63962-8_203-1. URL https://doi.org/10.1007/
978-3-319-63962-8_203-1.

[135] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Convergent and commu-
tative replicated data types. Bulletin of the European Association for Theoretical Computer Science
(EATCS), June 2011.

[136] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Convergent and
commutative replicated data types. Bulletin of the EATCS, 104:67–88, 2011. URL http:
//eatcs.org/beatcs/index.php/beatcs/article/view/120.

[137] Simon Shillaker and Peter R. Pietzuch. Faasm: Lightweight isolation for efficient stateful
serverless computing. CoRR, abs/2002.09344, 2020. URL https://arxiv.org/abs/2002.
09344.

[138] Sergey Shnitkind. Linkrun, 2019. URL https://github.com/trendsci/linkrun/.

[139] Thomas Shull, Jian Huang, and Josep Torrellas. AutoPersist: An easy-to-use java nvm frame-
work based on reachability. In Proceedings of the conference on Programming Language Design and
Implementation, PLDI’19. ACM, 2019.

Page 54 of 56

https://www.usenix.org/conference/nsdi19/presentation/pu
https://redis.io/
https://redis.io/topics/replication
https://doi.org/10.1145/3030207.3053671
http://doi.acm.org/10.1145/3284028.3284029
https://docs.aws.amazon.com/efs/latest/ug/limits.html#limits-fs-specific
https://docs.aws.amazon.com/efs/latest/ug/limits.html#limits-fs-specific
http://arxiv.org/abs/1810.09679
https://doi.org/10.1007/978-3-319-63962-8_203-1
https://doi.org/10.1007/978-3-319-63962-8_203-1
http://eatcs.org/beatcs/index.php/beatcs/article/view/120
http://eatcs.org/beatcs/index.php/beatcs/article/view/120
https://arxiv.org/abs/2002.09344
https://arxiv.org/abs/2002.09344
https://github.com/trendsci/linkrun/

H2020 825184 RIA
XX/XX/2022 CloudButton

[140] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI-The
Complete Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd. (revised)
edition, 1998. ISBN 0262692155.

[141] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Symp. on Operating Systems Principles, SOSP ’11, pages 385–400,
New York, NY, USA, 2011. ISBN 978-1-4503-0977-6. doi: http://doi.acm.org/10.1145/2043556.
2043592. URL http://doi.acm.org/10.1145/2043556.2043592.

[142] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith, Jose M. Faleiro,
Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. Cloudburst: Stateful
functions-as-a-service, 2020.

[143] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian Schuepbach, and
Bernard Metzler. Unification of temporary storage in the nodekernel architecture. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 767–782, Renton, WA, July 2019.
USENIX Association. ISBN 978-1-939133-03-8. URL https://www.usenix.org/conference/
atc19/presentation/stuedi.

[144] Pierre Sutra. On the correctness of egalitarian paxos. Inf. Process. Lett., 156:105901, 2020. doi:
10.1016/j.ipl.2019.105901. URL https://doi.org/10.1016/j.ipl.2019.105901.

[145] Pierre Sutra, Etienne Riviere, Cristian Cotes, Marc Sánchez-Artigas, Pedro García-López, Em-
manuel Bernard, William Burns, and Galder Zamarreno. CRESON: callable and replicated
shared objects over nosql. In 37th IEEE International Conference on Distributed Computing Sys-
tems, ICDCS’17, 2017. doi: 10.1109/ICDCS.2017.239.

[146] Ole Tange. GNU parallel: The command-line power tool. login Usenix Mag., 36(1), 2011.

[147] [The Infinispan Team.

[148] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer, and
Carl H. Hauser. Managing update conflicts in Bayou, a weakly connected replicated stor-
age system. pages 172–182, Copper Mountain, CO, USA, December 1995. ACM SIGOPS,
ACM Press. http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/
p172-terry.pdf.

[149] TPC Benchmark B. URL http://www.tpc.org/tpcb.

[150] John A. Trono. A new exercise in concurrency. SIGCSE Bulletin, 26(3):8–10, 1994. ISSN 0097-
8418. doi: 10.1145/187387.187391.

[151] Kenton Varda. Protocol buffers: Google’s data interchange format. Techni-
cal report, Google, 6 2008. URL http://google-opensource.blogspot.com/2008/07/
protocol-buffers-googles-data.html.

[152] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persistent
memory. In Proceedings of the conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’11. ACM, 2011.

[153] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis,
Vasily Tarasov, Feng Yan, and Yue Cheng. Infinicache: Exploiting ephemeral serverless func-
tions to build a cost-effective memory cache. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 267–281, Santa Clara, CA, February 2020. USENIX Association.
ISBN 978-1-939133-12-0. URL https://www.usenix.org/conference/fast20/presentation/
wang-ao.

Page 55 of 56

http://doi.acm.org/10.1145/2043556.2043592
https://www.usenix.org/conference/atc19/presentation/stuedi
https://www.usenix.org/conference/atc19/presentation/stuedi
https://doi.org/10.1016/j.ipl.2019.105901
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.tpc.org/tpcb
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao

H2020 825184 RIA
XX/XX/2022 CloudButton

[154] Hao Wang, Di Niu, and Baochun Li. Distributed machine learning with a serverless architec-
ture. In IEEE Conference on Computer Communications, INFOCOM 2019, 2019.

[155] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift. Peeking be-
hind the curtains of serverless platforms. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 133–146, Boston, MA, 2018. USENIX Association. ISBN 978-1-931971-44-7. URL
https://www.usenix.org/conference/atc18/presentation/wang-liang.

[156] Jim Webber. A programmatic introduction to neo4j. In Proceedings of the 3rd Annual Conference
on Systems, Programming, and Applications: Software for Humanity, SPLASH ’12, page 217–218,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450315630. doi:
10.1145/2384716.2384777. URL https://doi.org/10.1145/2384716.2384777.

[157] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. Autoscaling tiered cloud storage
in anna. Proc. VLDB Endow., 12(6):624–638, February 2019. ISSN 2150-8097. doi: 10.14778/
3311880.3311881. URL https://doi.org/10.14778/3311880.3311881.

[158] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu Zang, and Haibing Guan.
Espresso: Brewing java for more non-volatility with non-volatile memory. In Proceedings of the
conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS’18.
ACM, 2018.

[159] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase,
Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. NOVA-Fortis: A fault-tolerant
non-volatile main memory file system. In Proceedings of the Symposium on Operating Systems
Principles, SOSP’17. ACM, 2017.

[160] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), pages 15–
28, San Jose, CA, 2012. USENIX. ISBN 978-931971-92-8. URL https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/zaharia.

[161] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi,
Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark: A unified engine for big data
processing. Communications of the ACM, 59(11), 2016.

Page 56 of 56

https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.14778/3311880.3311881
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Executive summary
	Introduction
	Stateful serverless programming with Crucial
	Using Crucial
	Programming model
	Sample applications
	Portage to serverless

	Design
	The distributed shared objects layer
	Fast aggregates through remote procedure call
	Lifecycle of an application
	Fault tolerance

	Implementation
	Evaluation
	Micro-benchmarks
	Fine-grained state management
	Fine-grained synchronization
	Smile library
	Usability of Crucial

	The Serverless Shell
	Programming with sshell
	System design
	Overview
	Serverless platform
	Executor
	Distributed storage
	Inter-process communication
	Implementation

	Evaluation
	Experimental setup
	Preliminaries
	Micro-benchmarks
	Large-scale application

	Extensions
	Support for non-volatile memory
	Programming with J-NVM
	Evaluation

	Ahead-of-time compilation
	Anchored keys
	Kubernetes operator

	Exploratory work
	T4.2 - Degradable objects
	T4.3 - Just-right synchronization
	Leaderless consensus
	Atomic multicast

	State of the Art
	Runtimes
	Programming frameworks
	Storage
	Distributed stateful computation

	Conclusion

