
HORIZON 2020 FRAMEWORK PROGRAMME

CloudButton
(grant agreement No 825184)

Serverless Data Analytics Platform

D5.2 CloudButton Prototype of Abstractions, Fault-tolerance
and Porting Tools

Due date of deliverable: 30-06-2020
Actual submission date: 31-07-2020

Start date of project: 01-01-2019 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 58

WP/Task related to this document WP5 / T5.2

WP/Task responsible Imperial

Leader Peter Pietzuch (Imperial)

Technical Manager Pedro García (URV)

Quality Manager Pierre Sutra (IMT)

Author(s) Simon Shillaker (Imperial), Mayeul Fournial (Imperial),
Peter Pietzuch (Imperial), Daniel Barcelona (URV), Josep
Sampé (URV), Pol Roca (URV)

Partner(s) Contributing Imperial, URV

Document ID CloudButton_D5.2_Public.pdf

Abstract High-level programming models are essential to realising
the potential of any distributed computing platform, and
are commonplace in existing big data and machine learn-
ing systems. However, serverless computing lacks such ab-
stractions, hence it is difficult for users to build new ap-
plications or port existing ones. To address this problem,
we present several novel programming models in Cloud-
Button, which adapt familiar big data, OS and HPC con-
cepts to the serverless environment. Specifically these are:
(1) MapReduce and multi-processing with the CloudButton
Toolkit; (2) multi-threaded serverless programming with
CRUCIAL; (3) FaasMP, automatic FaaS-ification of existing
OpenMP code; and (4) FaasMPI, transparent execution of
MPI applications on serverless.

Keywords serverless, function-as-a-service, machine learning, MPI,
OpenMP, HPC

History of changes

Version Date Author Summary of changes

0.1 2020-06-18 Daniel Barcelona Crucial API

0.2 2020-06-22 Simon Shillaker FAASM: DDOs, FaasMPI and FaasMP

0.3 2020-06-29 Peter Pietzuch Add more detailed material

0.4 2020-07-02 Simon Shillaker Summary, abstract and tidying up

0.5 2020-07-02 Peter Pietzuch Additional clean-up

0.6 2020-07-10 Josep Sampé, Pol
Roca

Python APIs and examples

0.7 2020-07-13 Simon Shillaker Integrating feedback

1.0 2020-07-23 Peter Pietzuch More review feedback

H2020 825184 RIA
31/7/2020 CloudButton

Table of Contents

1 Introduction 2
1.1 Programming in CloudButton . 2
1.2 Serverless programming in context . 3
1.3 Overview of developed programming abstractions in CloudButton 3

2 Background 5
2.1 Challenges in current serverless platforms . 5
2.2 Serverless storage layers . 6
2.3 Serverless data analytics . 7

3 CloudButton Toolkit: Python APIs 8
3.1 Map-Reduce API . 8
3.2 Python multiprocessing API . 9

3.2.1 An example: Deep learning video inference . 10

4 CRUCIAL: Serverless multi-threaded applications 13
4.1 CRUCIAL programming model . 13

4.1.1 Execution abstractions . 13
4.1.2 State abstractions . 14

4.2 Sample applications . 14

5 FAASM: High-Performance Thread-Based Serverless 17
5.1 FAASM and Serverless Big Data . 17
5.2 Faaslets . 17
5.3 Host interface . 18
5.4 Building FAASM functions . 20
5.5 State . 20
5.6 Scheduling . 21

6 FaasMP: Transparent use of OpenMP APIs with FAASM 22
6.1 Background: Open Multi-Processing (OpenMP) . 22

6.1.1 OpenMP API . 22
6.1.2 Compiler code transformation . 23
6.1.3 Runtime library . 24

6.2 Related work on distributed OpenMP . 25
6.2.1 OpenMP to MPI translation . 25
6.2.2 OpenMP on software distributed shared memory (DSM) 25
6.2.3 Offloading to the cloud . 26

6.3 FaasMP Design . 26
6.3.1 Platform requirements for shared memory multi-processing 27
6.3.2 Challenges when distributing OpenMP . 28
6.3.3 Strawman design: compiling libomp.so to WebAssembly 30
6.3.4 Design . 30

6.4 FaasMP architecture . 31
6.4.1 WebAssembly OpenMP runtime . 32
6.4.2 OpenMP toolchain . 33

6.5 Local library runtime implementation . 34
6.5.1 Forking with Wasm threads . 34
6.5.2 Loop support . 36
6.5.3 Threading and synchronisation support . 37

i

H2020 825184 RIA
31/7/2020 CloudButton

6.5.4 WebAssembly thread pool . 38
6.6 Experimental evaluation . 39

6.6.1 Linear algebra applications . 39
6.6.2 Local performance characteristics . 40
6.6.3 Distribution experiments . 41
6.6.4 Usability and potential . 43
6.6.5 Other performance considerations . 43

7 FaasMPI: Bridging the gap between HPC and the cloud 46
7.1 Motivating serverless MPI . 46
7.2 FaasMPI and FAASM . 46
7.3 FaasMPI architecture . 47

7.3.1 MPI one-sided memory access . 48

8 Distributed Data Objects: Object-oriented programming in FAASM 49
8.1 High-level state abstraction . 49
8.2 Two-tier state architecture . 50
8.3 Experimental evaluation . 50

8.3.1 Experimental set-up . 50
8.3.2 Experimental results . 51

9 Conclusion 52

ii

H2020 825184 RIA
31/7/2020 CloudButton

Executive summary
Building distributed stateful applications is hard; users must manage coordination between workers
and efficient distribution of data, while simultaneously scaling underlying system resources. Server-
less computing provides an easy way to provision and scale resources, but writing applications for
this environment is still challenging. This is down to the lack of a high-level programming model. Ex-
isting work on such programming models in big data and machine learning systems is extensive,
ranging from RDDs in Spark [1], to tensors in TensorFlow [2] and a plethora of variations on MapRe-
duce [3, 4, 5]. Similar work in serverless is scant, with only a small number of use-case specific
approaches that are tightly coupled to the underlying systems [6, 7, 8, 9].

To address this, we present several high-level serverless programming models in the context of
CloudButton. Not only do we provide powerful, easy-to-use abstractions, but do so without in-
troducing new concepts. Instead we adapt familiar principles such as multi-threading and multi-
processing, the ubiquitous MapReduce paradigm, and the two most popular HPC frameworks, OpenMP
and MPI. In this deliverable, we describe the following work: (i) MapReduce with the CloudButton
Toolkit; (ii) multi-processing with the CloudButton Toolkit to transparently port existing Python ap-
plications; (iii) serverless multi-threading in Java with CRUCIAL; (iv) WebAssembly programming
in FAASM with Distributed Data Objects; (v) transparent parallel applications using OpenMP and
FaasMP; and (vi) transparent execution of distributed applications using MPI and FaasMPI.

Page 1 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Figure 1: CloudButton architecture

1 Introduction
Much existing serverless work has covered the underlying runtime environment, focusing on its
scaling and performance, but little attention has been paid to actually writing serverless applications.
Writing these applications remains a challenge, as users must learn new frameworks and concepts, or
rewrite existing applications to fit underlying platforms with unfamiliar concepts. While some sys-
tems have created use-case specific programming models, none provide a generic approach, and do
not support transparently porting legacy applications. CloudButton aims to change this by creating
a programming environment that makes it easy for users to build and scale serverless big data appli-
cations. In this deliverable, we report on our findings regarding a range of innovative programming
models for serverless applications.

1.1 Programming in CloudButton

CloudButton aims to make serverless efficient for big data and easy to use, and hence providing
appropriate programming models is key to the project’s success. Figure 1 shows the CloudButton
architecture, and highlights the breadth of language support and usage patterns that the project tar-
gets through its use cases. CloudButton consists of three serverless frameworks, all of which run
on shared disaggregated resources. While these frameworks all cater to different languages and use
cases, they are united by a common principle: they build on familiar concepts and abstractions, and
thus target full transparency where possible.

This deliverable describes how we achieve this aim in each of the three frameworks in Cloud-
Button, namely the CloudButton Toolkit, CRUCIAL and FAASM. The CloudButton Toolkit uses the
ubiquitous MapReduce paradigm [3] to provide a simple yet powerful programming model that many
big data applications already adopt; it also includes a serverless integration with the standard Python
multiprocessing library to transparently port existing applications; CRUCIAL provides a familiar multi-
threaded programming model by mapping OS threads to underlying serverless functions using stan-
dard Java constructs; FAASM supports the two most popular C/C++ HPC frameworks, OpenMP and

Page 2 of 58

H2020 825184 RIA
31/7/2020 CloudButton

MPI, by mapping its lightweight thread-based isolation onto serverless functions; it also provides
high-level object-oriented abstractions in several languages, giving access to simple distributed data
structures.

1.2 Serverless programming in context

Existing work on serverless computing has focused on runtime design [10, 11, 12], storage perfor-
mance [13, 14], state management [15, 16] and application-specific platforms [6, 8]. A comparatively
small amount of attention has been paid to creating generic serverless programming models, and al-
most none has been paid to porting legacy applications. Jangda et al. [17] propose a formal semantics
for serverless computing but do not provide a high-level programming model; PLASMA [9] intro-
duces an elastic programming model for serverless, but focuses on actor-based code; Numpywren [7]
includes a Python-based programming model, but is limited to linear algebra operations.

The official release of AWS Lambda in early 2015 introduced the idea of using stateless functions
as the sole fundamental compute primitive. PyWren [18] demonstrated the serverless model was
general enough to provide the building blocks for elastic and scalable big data systems but that the
current platforms suffered from critical performance barriers that needed to be lifted. Related work
tuned the fundamental ideas of PyWren to their own applications [19, 20, 21, 22] or tried to provide a
new storage layer [23, 24] to circumvent the limitations of the platforms. This lead to the development
of stateful efficient serverless solutions [25, 26, 27] which present efficient yet scalable data processing
applications.

1.3 Overview of developed programming abstractions in CloudButton

Next we describe the three main programming abstractions and implementations for serverless com-
puting that we have developed as part of the CloudButton project in response to our use case re-
quirements:

CloudButton Toolkit. One core principle behind CloudButton project is programming simplicity.
Our focus is to make serverless computing as usable as possible, irrespective of whether the pro-
grammer is a cloud expert or not. We have devoted efforts to integrate Python CloudButton toolkit
with other tools (e.g. Python notebooks such as Jupyter), which are very popular environments for
the scientific community.

To simplify the serverless transition of existing multithreaded codebases, we present two different
Python APIs: one based on Map-Reduce calls and another based on standard Python APIs such as
multiprocessing and concurrent.futures.

CRUCIAL. CRUCIAL [14] enables the development of stateful distributed applications in the cloud
by simply extending Java’s concurrency model. It provides computation abstractions that rely on
AWS Lambda to run Java’s Runnable and Callable interfaces based on a basic component: the cloud
thread. To manage state and task coordination at fine granularity, the system builds a distributed
shared object (DSO) layer, with strong consistency guarantees. The application runs on the client’s
machine but uses disaggregated resources in the cloud to distribute computation and shared state.

The aim is to keep the simplicity of serverless in the programming model. Hence writing code
in CRUCIAL is similar to ordinary concurrent Java and distribution is handled transparently. It only
requires the user to use simple annotations and constructs to (i) instantiate cloud threads, (ii) annotate
shared data, and (iii) use custom synchronisation objects.

The basic cloud thread abstraction lets users run simple Runnable tasks seamlessly in the cloud.
Internally, CRUCIAL performs the appropriate transformations and connections to run the code in
the disaggregated FaaS platform. Additionally, the system provides a custom implementation of the
ExecutorService interface, the ServerlessExecutorService, to enable powerful parallel computa-
tions directly from traditional Java concurrency code.

Since cloud functions cannot communicate directly, they must communicate through remote
shared objects. CRUCIAL builds a distributed shared object (DSO) store to make OOP objects avail-
able across hosts. The DSO store uses consistent hashing to efficiently address the shared data and

Page 3 of 58

H2020 825184 RIA
31/7/2020 CloudButton

allows to access and update the objects at the level of object methods. This facilitates the develop-
ment of applications requiring fine-grained state sharing and also enables to implement fine-grained
coordination. Data durability is ensured with state machine replication to keep strong consistency.

FAASM. FAASM is a high-performance stateful serverless runtime, which supports C/C++ and the
two most popular HPC programming frameworks, OpenMP and MPI. OpenMP and MPI underpin
a huge array of existing scientific, big data and machine learning codebases [28, 29, 30, 31]. Through
FaasMP and FaasMPI, FAASM supports transparent execution of unmodified OpenMP and MPI code,
making it straightforward to port this huge array of existing applications to CloudButton.

FAASM is designed around a new lightweight isolation abstraction called a Faaslet [25], which
provides security and resource isolation using WebAssembly [32] coupled with existing OS tools
such as cgroups and network namespaces. Faasm provides access to distributed state through a two-
tier state architecture, which gives co-located functions zero-copy, concurrent access to in-memory
state, and synchronises this state across hosts.

FAASM is designed to be a pluggable runtime that integrates with existing serverless platforms.
In CloudButton we use FAASM’s Knative [33] integration to execute on the shared disaggregated
resource layer shown in Figure 1.

Page 4 of 58

H2020 825184 RIA
31/7/2020 CloudButton

2 Background
FaaS or serverless provides a highly elastic and scalable compute layer for cloud-based applications.
Developers write functions in the language of their choice, the provider then provisions and bills the
resources on demand, lifting the operational burden from the programmer (“serverless”). It is an
advantageous model for cloud providers because they can maximise the utilisation of their resources
by co-locating more tenants per machine [34]; the users—provided the development cost is not too
high—benefit from fine-grain billing and the absence of operational management costs.

Popular commercial platforms can be split into two categories: scalable container orchestrators
such as AWS Lambda [35] and software fault isolation engines running small stateless functions,
suitable for edge computing on a network [36, 37]. They are both elastic compute layers which
when utilised properly can fulfil the same compute requirements at a lower cost than traditional
IaaS methods thanks to the fine-grain scaling and billing which helps avoid over-provisioning. Such
careful tuning implies that all platforms require custom code, not only in the form but also in the
algorithms which have to deal with the platforms somewhat arbitrary limitations (e.g. 15 minutes
compute limit for AWS lambdas).

Before we propose new programming models for FaaS, this section explores the issues with cur-
rent commercial FaaS platforms (§2.1) and their storage layers (§2.2), which limit the ease with which
applications can be built on top of them (§2.3).

2.1 Challenges in current serverless platforms

Commercial serverless platforms at the moment can scale shared-nothing task-parallel computation,
provided that it is mostly compute-bound [38]. This still fits a variety of self-contained parallel al-
gorithms applied on incoming streams of data, e.g., for event-driven applications in the cloud, data
transformation, Internet-of-Things (IoT) and edge computing. The mainstream technology to run
such lightweight tasks are containers because of their ease of provisioning, and the large set of sup-
ported applications. Any programming model for serverless must be compatible with existing limi-
tations of serverless platforms:

(1) Data shipping architecture. The main performance reduction comes from the function isolation
and their physical dissociation from storage [39, 40, 38]. Functions must pull data from cloud storage
services over the network, and the associated performance degradation is worsened by the following
properties, which prevent common optimisations:

1. Low network bandwidth inside functions.

2. Lack of function-to-function communication.

3. Lack of fast and scalable shared state.

4. Functions are short-lived and not reusable.

(2) Cold start latency Many serverless platforms are known for exhibiting high latencies (in the
order of seconds) [41] before reaching the first line of user code. This is far from the expected pro-
gramming model of a “function”. There are two main causes for latency:

1. POSIX virtualisation/initialisation of containers; and

2. dynamic language runtime and library loading at function start.

(3) Limited resources (memory, disk, CPU). Typical consumer cloud platforms offer only resource-
limited containers compared to IaaS servers, which often represent lower compute costs for users,
even though they actually come with additional operational costs.

Page 5 of 58

H2020 825184 RIA
31/7/2020 CloudButton

2.2 Serverless storage layers

FaaS focuses on stateless compute, and as such the question of adequate storage layer has been
treated independently. The current FaaS paradigm is not compatible with common cloud-native
storage systems. For example, a serverless map/reduce job to sort 100 TB of data can end up costing
$23k and take 8 days to complete1 just the shuffle phase; compared to 50 minutes & $144 for Spark
to complete entirely [22]. Indeed, the shuffle phase of the cloud sort requires storing 100 TB of data
in an automatically scalable cloud storage service. On AWS Lambda, the only storage option scal-
able enough for such a data amount is AWS S3, with a guaranteed throughput of at least 3, 500 PUT
IOPS [35, 42]. This is largely insufficient to complete the task in a timeline fashion2. In this case, Lo-
cus [22] suggests the issue can be remediated with a fine-tuned combination of fast and slow storage
to efficiently handle the shuffle and reduce parts using an extra merge step after the reduce.

Therefore, current serverless platforms lead to a novel combination of requirements for the stor-
age layer:

1. Scalability: automatic, fine-grain, and pay-per-use.

2. Performance: high throughput and low latency.

3. Storage: any object size, low cost, and ephemeral.

The CAP theorem [43] shows the difficulty of creating a reliable scalable distributed storage sys-
tem with such performance guarantees, especially with fine-grained scalability. The majority of ex-
isting storage services transfer incoming data onto a medium of choice because they are designed
for long-term storage. Deletions are not free operations on those platforms, thus the ephemeral stor-
age characteristics does not drive the costs down in the same way that it can for the compute layer,
which can efficiently drop or share excess resources. The savings can therefore only come from an
aggressive garbage removal policy, either done by the application or the storage layer, which allows
the storage layer to reclaim some of its most desired resources such as memory.

Multi-tier storage Many serverless-specific storage services leverage a combination of existing stor-
age technologies under a single API. They aim to provide both a low latency store and a high band-
width blob store [18]. Examples of such solutions include:

• Pocket [23] is an autoscaling storage system that utilises multiple storage technologies with an
API that allows serverless applications to rightsize their resource use through hints. It is eco-
nomical by leveraging advanced flash storage techniques for speeding up remote memory ac-
cesses [44] and is capable of DRAM-like throughput but using NVM-e drives for storage which
drives down costs by 60%. Relying on pre-fetching and hints however can be problematic
without a suitable programming model.

• Cloudburst [27] is a serverless platform built on Anna, a distributed KVS, leveraging multiple
storage technologies. It monitors frequently used data and uses a consistent caching strategy to
replicate it and bring it closer to the computer layer. Inversely, cold data is demoted to slower
but cheaper storage in an independently-scalable media fashion.

• Shredder [45] is a multi-tenant, yet dependent on tenant cooperation, in-memory store. It uses
a kernel bypass mechanism to speed up remote network accesses to avoid requiring specific
RDMA-like technologies. It preserves the serverless benefits of logically decoupling compute
and storage, however, it co-locates the two when possible. Shredder does not offer as much
storage elasticity as Anna and cannot provide fairness guarantees between functions.

1Assuming 2 GB of memory per lambda (1 GB left for the map/reduce language runtime) & $0.0095 per 1000 PUT+GET
on AWS S3 London: 100 TB/2 GB = 50k partitions⇒ 50, 0002 files ×$0.0000095 = $23, 750.

2500002 files/3, 500 PUT per sec ≈ 8 days

Page 6 of 58

H2020 825184 RIA
31/7/2020 CloudButton

To decide on what storage technology to use, cost models allow serverless map/reduce jobs to
find an optimal cost/performance balance to allocate expensive but fast storage (e.g. Redis [46]) and
rate-limited but cheap storage (e.g. S3 [42]) [22] for their map-reduce operations.

Some SQL-compatible storage platforms refer to themselves as serverless, either because they
are themselves running on serverless platforms [47], or because they offer scaling to zero and fine-
grained billing associated with the underlying DBMS [48]. These are, however, not suitable for use as
the high-performance ephemeral storage serverless applications because they are alternative query
engines to an underlying storage service.

Infinispan citeInfinispan provides a multi-purpose distributed in-memory store that can be used
to implement distributed state for serverelss functions, as demonstrated in CRUCIAL.

2.3 Serverless data analytics

The issues of current serverless platforms were identified by frameworks that seek to utilise the
serverless promise of a virtually infinitely scalable compute layer. Big data applications such as
PyWren use stateless functions to compute distributed operations, including map/reduce [18, 19].
After initially struggling with network efficiency, more recent work such as numpywren [20], which
focuses on linear algebra, manages to partially overcome these issues by pipelining data. This allows
numpywren to simultaneously pre-fetch and save data while executing computation. The orches-
tration of the functions is, however, challenging because a pipelining mechanism requires to reuse
functions but their lifetime is usually limited by the platform. Therefore such solutions are not appli-
cable to many applications.

It is common for serverless applications to require additional stateful components to handle some
specialised coordination mechanisms [49, 22, 21]. This approach may be manageable on a small
scale but is ultimately an issue that limits scalability and usability of systems, and often represents a
critical point of failure. Some approaches focus on the custom provisioning of resources for specific
applications such as statistical machine learning [50], while others provide more general frameworks
to coordinate serverless machine learning (ML) [49, 51]. Often not backward compatible, they may
require to rewrite all the existing ML stack to make use of their features, and they do not provide
a storage layer as elastic as the compute layer. More recent approaches focus on the more fine-
grained requirements of reinforcement learning (RL) [52]. They can even scale RL algorithms in a
fault-tolerant manner thanks to the use of a global state disassociated from stateless functions.

Finally, the HPC community has also implemented applications to run on serverless platforms [53,
54]. These approaches are on the fringes of typical HPC applications by not using the tools commonly
used by the community (e.g. RDMA, OpenMP, and MPI) and are limited to trivially scalable tasks.
Supporting them is one of the main drivers in the CloudButton project.

Page 7 of 58

H2020 825184 RIA
31/7/2020 CloudButton

3 CloudButton Toolkit: Python APIs
The Python CloudButton toolkit exposes different APIs that can be used based on user requirements.
In D5.1, we presented a first API definition based on map-reduce. Now, the flexibility of the Cloud-
button toolkit is substantially increased by mimicking the Python’s multiprocessing API and com-
ponents.

3.1 Map-Reduce API

The Map-Reduce API is the basic API used by the Python Cloudbutton Toolkit, and it integrates the
basic, low-level methods to spawn functions in the cloud. The primary object in the Map-Reduce
API of the Cloudbutton toolkit is the FunctionExecutor. Once you get an instance of the executor,
you can spawn functions with the next API methods:

. call_async(): The first proposed method is used to run asynchronously just one function in the
cloud. This method is non-blocking, i.e., the sequential execution of the local code continues without
waiting for the results. The parameters of this method are the function_code and the input data that
the function executor receives.

. map(): The second proposed method is called map(). This method is used to run multiple function
executors. This method is also non-blocking and takes as main input the map_function_code and the
data that the map function executors receive. Unlike the prior method, this one receives as input data
a list the number of parallel functions to spawn, alongside with the input parameters that should be
sent to the functions.

. map_reduce(): The third proposed method is used to execute MapReduce flows, i.e., multiple map
function executors (map phase), and one or multiple reduce function executors (reduce phase). This
method is also be non-blocking. It takes as input the map_function_code, the input data as a list of
values, and the reduce_function_code. As in the prior method, it can spawn the desired number of
mappers and reducers.

. wait(): On the client side, the FunctionExecutor offers a method to monitor the executions. This
method is called wait(). It is synchronous, i.e., the local user code is blocked until the call to wait()
ends. It provides a configurable parameter to decide when to release the call and continue the execu-
tion. Moreover, a user can decide to unlock the method in three different circumstances: (1) ‘Always’:
it checks whether or not some result is available on the invocation of wait(). If so, it returns them.
Otherwise, it resumes the local execution; (2) ‘Any completed’: it resumes the local execution upon
termination of any function invocation; and (3) ‘All completed’: it waits until all the functions have
finished they execution and the results are available. In these three cases, the wait() method returns
a 2-tuple of lists: the first list with the futures that completed and the second with the uncompleted
ones.

. get_result(): This method is used to collect the results from the functions when a parallel task
has finished (e.g., map(), map_reduce(), etc.). It adds some functionality such as timeout support,
keyboard interruption to cancel the retrieval of results, and a progress bar to inform users about the
% of task completion. Last but not least, this method is composition-aware: it transparently waits for
an on-going function composition to complete, just returning the final result to users.

Listing 1: Cloudbutton toolkit example using the Map-Reduce API
from cloudbutton.engine import function_executor

def my_map_function(x, y):
return x + y

if __name__ == "__main__":
args = [# Init list of parameters

(1, 2), # Args for function1
(3, 4), # Args for function2

Page 8 of 58

H2020 825184 RIA
31/7/2020 CloudButton

(5, 6), # Args for function3
] # End list of parameters

exc = function_executor()
exc.map(my_map_function, args)
print(exc.get_result())

3.2 Python multiprocessing API

The Cloudbutton toolkit supports most of the Python multiprocessing abstractions, such as the Pro-
cess, Pool, Queue, Pipe, Lock, Semaphore, Event, Barrier, and also remote memory in Manager ob-
jects. These shared components across processes are transparently supported by using a Redis de-
ployment. Thus, a common user that knows how to program with these components can already
program the Cloud. On the other hand, the Cloudbutton toolkit also enables transparent access to
the storage and memory in the cloud. This means any application can be executed both locally or in
any supported cloud without modification. Consequently, any current multiprocessing-based appli-
cation can be moved and scaled to the cloud by only changing the import statement of the script. See
the next example that calculates Pi both locally using multiprocessing or transparently in the Cloud:

Listing 2: Cloudbutton toolkit example using the Python multiprocessing API
from multiprocessing import Pool
from cloudbutton.multiprocessing import Pool
import random

def is_in(n):
count = 0
for i in range(n):

x=random.random()
y=random.random()
if x*x + y*y < 1:

count += 1
return count

np, n = 4, 10000000
part_count = [int(n/np)] * np
pool = Pool(processes=np)
count = pool.map(is_in, part_count)
pi = sum(count)/n*4
print("Esitmated Pi: {}".format(pi))

The objects supported by the CloudButton toolkit in the multiprocessing API are described in
Table 1. The primary object in the multiprocessing API of the CloudButton toolkit is the Pool. Once
you get an instance of the Pool, you can spawn functions to the Cloud with the next API methods:

. apply(): Call func with arguments args and keyword arguments kwds. It blocks until the result is
ready. Given this blocks, apply_async() is better suited for performing work in parallel. Additionally,
func is only executed in one of the workers of the pool.

. apply_async(): A variant of the apply() method which returns a result object instead of the result
itself.

. map(). A parallel equivalent of the map() built-in function (it supports only one iterable argument
though). It blocks until the result is ready. This method chops the iterable into a number of chunks
which it submits to the process pool as separate tasks. The (approximate) size of these chunks can be
specified by setting chunksize to a positive integer.

. map_async(): A variant of the map() method which returns a result object instead of the result
itself.

Page 9 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Table 1: Python multiprocessing API components

CATEGORY API DESCRIPTION

Object Pool, Manager Pool and Manager object

Connection Pipe A pipe which by default is
duplex (two-way)

Queues Queue,
SimpleQueue,
JoinableQueue

Remote queues

Data structure Value, Array Generic objects

Synchronization Lock, RLock,
Semaphore,
BoundedSemaphore,
Condition, Event,
Barrier

Objects for distributed
worker-to-worker
coordination

. imap(): A lazier version of map().

. imap_unordered(): The same as imap() except that the ordering of the results from the returned
iterator should be considered arbitrary. (Only when there is only one worker process is the order
guaranteed to be “correct”.).

. starmap(): Like map() except that the elements of the iterable are expected to be iterables that are
unpacked as arguments. Hence an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].

. starmap_async(): A combination of starmap() and map_async() that iterates over iterable of iter-
ables and calls func with the iterables unpacked. Returns a result object.

3.2.1 An example: Deep learning video inference

This example uses the Cloudbutton Toolkit to process videos from the Moments in Time video
dataset [55]. It predicts actions that appear in videos using a pretrained ResNet50 deep neural net-
work model. By means of the toolkit’s proxy API, this code is structured in a way that it can be
executed in a remote environment where tasks are executed by serverless functions that load data
from Cloud storage, as well as in a local environment where processes execute those tasks and load
data from shared memory as a storage. The storage is used to load input video files and the serialized
model for inference.

Listing 3: Importing of equivalent API’s
LOCAL_EXEC = False
INPUT_DATA_DIR = ’momentsintime/input_data’

if LOCAL_EXEC:
import os
pool_initargs = {

’compute_backend’: ’localhost’,
’storage_backend’: ’localhost’
}

weights_location = ’/dev/shm/model_weights’
INPUT_DATA_DIR = os.path.abspath(INPUT_DATA_DIR)

else:
from cloudbutton.cloud_proxy import os, open

Page 10 of 58

H2020 825184 RIA
31/7/2020 CloudButton

pool_initargs = {
’compute_backend’: ’ibm_cf’,
’storage_backend’: ’ibm_cos’,
’runtime’: ’dhak/pywren-runtime-pytorch:3.6’,
’runtime_memory’: 2048
}

weights_location = ’momentsintime/models/model_weights’

After the type of the execution has been decided (local or remote) in Listing 3, a change in the
import of the standard Python library to the proxy version from Cloudbutton Toolkit enables access-
ing to either local files or remote files stored in the Cloud using the same sort of methods. After this
change, calls to the os module or open function will either happen in the local filesystem or in the
Cloud storage filesystem transparently to the user.

Listing 4: Loading of model to the storage
ROOT_URL = ’http://moments.csail.mit.edu/moments_models’
WEIGHTS_FILE = ’moments_RGB_resnet50_imagenetpretrained.pth.tar’

os.system(’wget ’ + ’/’.join([ROOT_URL, WEIGHTS_FILE]))

with builtins.open(WEIGHTS_FILE, ’rb’) as f_in:
weights = f_in.read()

with open(weights_location, ’wb’) as f_out:
f_out.write(weights)

As the first step, the model is pulled from the respective repository and then loaded to the storage.
This step is necessary since the model has to be placed in the storage for every function to be able to
access it. There is a little subtlety in this code which is the two accesses to the files. In the first call,
the native builtins.open method is used to force the opening of a local file which is the serialized
model that just has been downloaded. In the second call, however, it is intended that the call to open
may store the model to shared memory or to Cloud storage.

Listing 5: Video prediction function
def predict_videos(queue, video_locations):

with open(weights_location, ’rb’) as f:
model = load_model(f)

model.eval()
results = []

for video_loc in video_locations:
with open(video_loc, ’rb’) as video_file:

frames = extract_frames(video_file, NUM_SEGMENTS)
input_v = torch.stack([transform(frame) for frame in frames])

with torch.no_grad():
logits = model(input_v)
h_x = F.softmax(logits, 1).mean(dim=0)
probs, idx = h_x.sort(0, True)

result = {
’key’: video_loc,
’prediction’: (idx[0], round(float(probs[0]), 5))

}
results.append(result)

Page 11 of 58

H2020 825184 RIA
31/7/2020 CloudButton

queue.put(results)

The video prediction function in Listing 5 shows a simple procedure that first loads the model
and then loads the input videos to make predictions one by one. After the inference of all videos is
completed, results are put in a queue that the main process reduces on the go. This reduce operation
processes results from the queue at the time they are completed and sent to the queue, and it creates
a record with the total amount of predictions made for each category:

Listing 6: Reduce function
def reduce_predictions(queue, n):

pred_x_categ = {}
for categ in categories:

pred_x_categ[categ] = 0

for i in range(n):
results = queue.get()
res_count += len(results)
for res in results:

idx, prob = res[’prediction’]
pred_x_categ[categories[idx]] += 1

return pred_x_categ

Listing 7: Main function
CONCURRENCY = 1000

def main():
queue = Queue()
pool = Pool(initargs=pool_initargs)

video_locations = [os.path.join(INPUT_DATA_DIR, name)
for name in os.listdir(INPUT_DATA_DIR)]

N = min(CONCURRENCY, len(video_locations))
iterable = [(queue, video_locations[n::CONCURRENCY])

for n in range(N)]

pool.map_async(func=predict_videos, iterable=iterable)
pred_x_categ = reduce_predictions(queue, N)
print(pred_x_categ)

Finally, Listing 7 contains the main function code. First, the list of paths or keys of the input
videos is obtained. Then, that list is split among N parts matching the desired concurrency, and thus,
each function may end up processing multiple videos. It is then when the call_async function is
called to map the lists of keys with the prediction function. After that, and since the last call was
asynchronous, the main process starts performing the reduce operation with the queue allowing it to
process results immediately without having to wait for all of them to complete.

As we can see, model inference is a good example of a process that can be embarrassingly par-
allelised thanks to the Cloudbutton Toolkit, because there are no dependencies or communication
between functions and the use of serverless backends allows for massive scaling.

Page 12 of 58

H2020 825184 RIA
31/7/2020 CloudButton

ABSTRACTION DESCRIPTION

CloudThread Serverless functions are invoked like threads.

ServerlessExecutorService Groups of tasks are managed with a simple executor
service.

Shared objects Linearizable (wait-free) distributed objects (e.g.,
AtomicInt, List, Map, . . .).

Synchronization objects Shared objects for thread synchronization primitives
(e.g., CyclicBarrier, Semaphore, Future).

@Shared User-defined shared object. Methods are run on the DSO
servers, allowing fine-grained updates and aggregates
(.add(), .update(), .merge(), . . .).

Data persistence Long-lived shared objects are replicated. Use
@Shared(persistence=true) to activate it.

Table 2: CRUCIAL programming abstractions

4 CRUCIAL: Serverless multi-threaded applications
CRUCIAL is a system for the development of stateful distributed applications on serverless environ-
ments. To simplify the writing of an application, CRUCIAL provides a thread abstraction that maps
a thread to the invocation of a serverless function: the cloud thread. This abstraction can be extended
to build task management systems with serverless thread pools. To support fine-grained state man-
agement and coordination, our system builds a distributed shared object (DSO) layer on top of a
low-latency in-memory data store. This layer provides out-of-the-box strong consistency guarantees,
simplifying the semantics of global state mutation across cloud threads. Since global state is manip-
ulated as remote objects, the interface for mutable state management becomes virtually unlimited,
only constrained by the expressiveness of the programming language (Java in our case). The result is
that CRUCIAL can operate on small data granules, making it easy to develop applications that have
fine-grained state sharing needs. CRUCIAL also leverages this layer to implement fine-grained coor-
dination. For applications that require longer retention of in-memory state, CRUCIAL ensures data
durability through replication. To ensure the consistency of replicas, CRUCIAL uses state machine
replication (SMR), so that any acknowledged write can survive failures.

CRUCIAL also focuses in not increasing the programming complexity of the serverless model.
With the help of a few annotations and constructs, developers can run their single-machine, multi-
threaded, stateful code in the cloud as serverless functions. CRUCIAL’s programming constructs
enable developers to enforce atomic operations on shared state, as well as to finely synchronise func-
tions at the application level, so that (imperative) implementations of popular algorithms such as
k-means can be effortlessly ported to serverless platforms.

A complete description of the design, implementation and evaluation of CRUCIAL is detailed in
D4.2. Here we provide a description of its API and programming abstractions.

4.1 CRUCIAL programming model

CRUCIAL presents an object-based programming model that can be integrated with any concurrent
object-oriented language. Our prototype library supports the Java programming language. Programs
in CRUCIAL resemble regular multi-threaded, object-oriented Java ones. The library is based on
annotations and simple constructs that the user uses or substitutes in their code, allowing to easily
move applications to the cloud. The abstractions comprise execution constructs and shared objects
and are summarised in Table 2.

4.1.1 Execution abstractions

Cloud threads. Users code their applications as programs that run multiple threads concurrently.
When using CRUCIAL, a conventional parallel computing Thread is replaced with a CloudThread,

Page 13 of 58

H2020 825184 RIA
31/7/2020 CloudButton

which is the smallest unit of computation in the library. Tasks that run on threads are still defined
as a Runnable and passed to a CloudThread that executes it. The distinction resides in that this class
hides execution details that allow the tasks to run on a cloud function in the FaaS platform.

Serverless executor service. As a higher-level execution abstraction, CRUCIAL offers the Serverless-
ExecutorService. This class allows the execution of Runnable and Callable objects by implement-
ing the Java ExecutorService interface. It facilitates the submission of individual tasks and fork-join
parallel constructs (invokeAll) to the cloud, retaining the full expressivity of the original interface.
Additionally, this executor also includes a distributed parallel for to run n iterations of a loop across
m workers. To use this feature, the user specifies the in-loop code (through a functional interface),
the boundaries for the iteration index, and the number of workers m.

4.1.2 State abstractions

State handling. The library already includes a set of base shared objects to support mutable shared
data across serverless functions. This group consists of common objects such as integers, counters,
maps, lists and arrays. These objects are wait-free and linearizable. This means that each method
invocation terminates after a finite amount of steps (despite concurrent accesses), and that concurrent
method invocations behave as if they were executed by a single thread. The @Shared annotation also
gives programmers the ability to craft their own custom shared objects. The library refers to an
object with a key crafted from the field’s name of the encompassing object. The programmer can
override this definition by explicitly writing @Shared(key=k). Distributed references are supported,
permitting a reference to cross the boundaries of a cloud thread. This feature helps preserve the
simplicity of multi-threaded programming in CRUCIAL.

Data Persistence. Shared objects in CRUCIAL can be either ephemeral or persistent. By default, shared
objects are ephemeral and only exist during the application lifetime. Once the application finishes,
they are discarded. Nonetheless, it is also possible to make them persistent with the annotation
@Shared(persistent=true). In such a case, the annotated object outlives the application lifetime
and is only removed from storage by an explicit call.

Synchronisation Vanilla serverless functions support only uncoordinated embarrassingly parallel
operations, or bulk synchronous parallelism (BSP). To provide fine-grained coordination of cloud
threads, the library offers a number of primitives such as cyclic barriers and semaphores. These
coordination primitives are semantically equivalent to those in the standard java.util.concurrent
library. They allow a coherent and flexible model of concurrency for serverless functions that is, as
of today, non-existent.

4.2 Sample applications

Listing 8 presents an application implemented with CRUCIAL. This simple program is a multi-
threaded Monte Carlo simulation that approximates the value of π. The application uses the cloud
thread abstraction to coordinate a fork-join thread structure that runs several instances of a regular
Runnable class. The tasks carry the estimation of π and use the library’s shared object counter to store
their global state. The previous fork-join pattern can also be implemented using the Serverless-
ExecutorService. In this case, instead of directly creating the threads, we simply use the content of
Listing 9.

An application that outputs an image approximating the Mandelbrot set with a gradient of colours
is shown in Listing 10. In this case, the shared state is a user-defined class that is annotated with
@Shared. The basic structure of the algorithm is a simple loop that can be parallelised. The rows
of the image are processed in parallel, using the invokeIterativeTask method of the Serverless-
ExecutorService class. This method takes as input a functional interface (IterativeTask) and three
integers. The interface defines the function to apply on the index of the for loop. The integers de-
fine respectively the number of tasks among which to distribute the iterations, and the boundaries of
these iterations (fromInclusive, toExclusive).

This second example illustrates the expressiveness and convenience of our library. In particular,

Page 14 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Listing 8: Monte Carlo simulation to approximate π.
public class PiEstimator implements Runnable{

private final static long ITERATIONS = 100_000_000;
private Random rand = new Random();
@Shared(key="counter")
crucial.AtomicLong counter = new crucial.AtomicLong(0);

public void run(){
long count = 0;
double x, y;
for (long i = 0L; i < ITERATIONS; i++) {

x = rand.nextDouble();
y = rand.nextDouble();
if (x * x + y * y <= 1.0) count++;

}
counter.addAndGet(count);

}
}

List<Thread> threads = new ArrayList<>(N_THREADS);
for (int i = 0; i < N_THREADS; i++) {

threads.add(new CloudThread(new PiEstimator()));
}
threads.forEach(Thread::start);
threads.forEach(Thread::join);
double output = 4.0 * counter.get() / (N_THREADS * ITERATIONS);

Listing 9: Using the ServerlessExecutorService to perform a Monte Carlo simulation.
ServerlessExecutorService se = new ServerlessExecutorService();
List<Callable> tasks = IntStream.range(0, N_THREADS).mapToObj(i -> Executors.callable(new

PiEstimator())).collect(Collectors.toList());
se.invokeAll(tasks);

as in multi-threaded programming, CRUCIAL allows to express concurrent tasks with lambdas and
pass them shared variables defined in the encompassing class.

The k-means implementation in Listing 11 shows a more complex application that uses synchro-
nization primitives like a barrier.

Page 15 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Listing 10: Mandelbrot set computation in a distributed parallel for.
public class Mandelbrot implements Serializable {

@Shared(key = "mandelbrotImage")
private MandelbrotImage image = new MandelbrotImage();

private static int[] computeMandelbrot(int row, int width, int height, int maxIters)
{...}

private void doMandelbrot() {
image.init(COLUMNS, ROWS);
ServerlessExecutorService se = new ServerlessExecutorService();
se.invokeIterativeTask((row) -> image.setRowColor(row, computeMandelbrot(row,

COLUMNS, ROWS, MAX_INTERNAL_ITERATIONS)), N_TASKS, 0, ROWS);
se.shutdown();

}
}

Listing 11: k-means implementation with CRUCIAL.
public class KMeans implements Runnable{

private CyclicBarrier barrier = new crucial.CyclicBarrier();
@Shared(key = "delta")
private GlobalDelta globalDelta = new GlobalDelta();
@Shared(key = "iterations")
private AtomicInteger globalIterCount = new AtomicInteger();
// Wraps a list of @Shared centroids
private GlobalCentroids centroids = new GlobalCentroids();

public void run(){
loadDatasetFragment();
int iterCount = globalIterCount.intValue();
do {

correctCentroids = globalCentroids.getCorrectCoordinates();
resetLocalStructures();
localDelta = computeClusters();
globalDelta.update(localDelta);
centroids.update(localCentroids, localSizes);
barrier.await();
globalIterCount.compareAndSet(iterCount, iterCount++);

} while (iterCount < maxIterations && !endCondition());
}

}

Page 16 of 58

H2020 825184 RIA
31/7/2020 CloudButton

5 FAASM: High-Performance Thread-Based Serverless
FAASM is a high-performance stateful serverless runtime, which isolates functions using a lightweight
mechanism called a Faaslet. Faaslets are based on threads, which operate in a shared address space
on each host. This means that, while Faaslets provide isolation and fair access to resources, they also
support concurrent, zero-copy access to shared state held in memory. This is in contrast to existing
serverless platforms which isolate functions in their own container of VM, and do not support paral-
lel processing on shared data. This thread-based approach makes FAASM uniquely placed to support
thread-based programming models, such as OpenMP and MPI, as well as more simple applications
based on pthreads.

5.1 FAASM and Serverless Big Data

In addition to locally shared state, FAASM synchronises state across hosts using a two-tier state archi-
tecture. This two-tier state, coupled with lightweight Faaslet isolation, is how FAASM address two
key problems facing highly parallel serverless big data, namely the container resource footprint and
data access overhead.

The container resource footprint is the high cost associated with container-based isolation, when
compared to the short-lived, high-volume functions that make up serverless big data. Containers
have start-up latencies in the hundreds of milliseconds to several seconds, leading to the cold-start
problem in today’s serverless platforms [41, 56]. The large memory footprint of containers limits
scalability—while technically capped at the process limit of a machine, the maximum number of
containers is usually limited by the amount of available memory, with only a few thousand containers
supported on a machine with 16 GB of RAM [57].

Data access overheads are caused by the stateless nature of existing container-based platforms,
which force state to be maintained externally, e.g. in object stores such as Amazon S3 [42] or passed
between function invocations. Both options incur costs due to duplicating data in each function,
repeated serialisation, and regular network transfers. This results in current applications adopt-
ing an inefficient “data-shipping architecture”, i.e. moving data to the computation and not vice
versa—such architectures have been abandoned by the data management community many decades
ago [38]. These overheads are compounded as the number of functions increases, reducing the bene-
fit of unlimited parallelism, which is what makes serverless computing attractive in the first place.

Faaslets provide multi-tenant isolation with orders of magnitude lower overheads than containers
or VMs. This is done in part, using software fault isolation (SFI) with WebAssembly [32]. Each function
associated with a Faaslet, together with its library and language runtime dependencies, is compiled
to WebAssembly before being uploaded to the system. The FAASM runtime then executes multiple
Faaslets, each with a dedicated thread, within a single address space. For resource isolation, the CPU
cycles of each thread are constrained using Linux cgroups [58] and network access is limited using
network namespaces [58] and traffic shaping. Many Faaslets can be executed efficiently and safely on a
single machine.

Since Faaslets share the same address space, they can access shared memory regions with local
state efficiently. This allows the co-location of data and functions and avoids serialisation overheads.
Faaslets use a two-tier state architecture, a local tier provides in-memory sharing, and a global tier
supports distributed access to state across hosts. The FAASM runtime provides a state management
API to Faaslets that gives fine-grained control over state in both tiers. Faaslets also support stateful
applications with different consistency requirements between the two tiers.

5.2 Faaslets

Faaslets are the isolation mechanism used in FAASM and are shown in Figure 2. They are built
around an instance of a WebAssembly module to provide the necessary isolation guarantees for
multi-tenancy in serverless clouds; in contrast, traditional serverless systems typically rely on con-
tainers [33, 59]. Faaslets provide a more lightweight execution environment than containers by only
virtualising the necessary environment for serverless functions. Therefore, Faaslets have a low mem-
ory footprint and can be spawned in the hundreds of microseconds against hundreds of milliseconds

Page 17 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Host interface

Virtual net interface
Function

(WebAssembly)

Message bus

Faaslet
Network namespaceThread + CGroup

WASI capabilities

Filesystem

Memory safety

Private
Shared

Memory

Figure 2: Faaslet isolation in FAASM

for container. This brings Faaslets much closer to the user’s idea of the programming model of a
function, which FaaS is meant to provide and is the unit of granularity that FAASM manages. We
provide below details of the resource control FAASM has in place.

Memory safety using WebAssembly. The untrusted user code is compiled to WebAssembly, which
can be translated to a safe intermediate representation (IR). Once instantiated, the WebAssem-
bly code running inside the Faaslet is guaranteed to only access its linear memory through
efficient bounds checking. Segments of this linear memory can, however, be mapped to multi-
ple Faaslets simultaneously, enabling shared in-memory regions to be efficiently shared when
Faaslets are co-located on a host. This can be enforced by an appropriate scheduling policy
from the runtime.

CPU access using cgroups. On each host, Faaslets run as part of a shared thread pool within a pro-
cess control group (cgroup)—a technology shared with containers—to establish fair local CPU
access guaranteed by the Linux kernel [58].

Network access using namespaces, virtual interfaces and traffic shaping. Each Faaslet has a sepa-
rate virtual network interface which resides in its own network namespace to provide isolated
access to networking . Traffic shaping is applied to this virtual interface to limit the rate of
traffic at the function level. This is to ensure they cannot saturate the host and is a useful mon-
itoring point for network usage. This can be used to mitigate low bandwidth issues, especially
important given that it is possible to pack many more Faaslets per machine than containers.

To mitigate the serverless cold starts (§2.1), users can define initialisation code separately from
their main function code, during which the language runtime and packages will be loaded. The
resulting WebAssembly memory can be safely serialised at this point and saved to the state which
once pulled on each host set to run this Faaslet will speed up start-up times by 490× compared to the
equivalent start-up process for a container.

5.3 Host interface

Faaslets interact with the platform using import functions that are provided to users modules by the
FAASM runtime to control the execution of serverless functions or perform traditional OS and libc
operations. The FAASM host interface is outlined in Table 3. The following summarises the main
features of the host interface, which our programming abstraction can exploit:

Serverless-specific APIs. There are two main types of serverless operations to support. First, Faaslets
can invoke other Faaslets and wait for their completion with custom mechanisms to set and get
input data. Second, Faaslets can interact with the shared memory state described below (§5.5)
by being provided direct pointer access to it. This latter feature makes Faaslets more suitable
for big data processing than other serverless isolation such as shared-nothing containers that
have to rely on HTTP protocols to operate on any shared data. Even serverless edge computing

Page 18 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Class Function Action Standard

Calls

byte* read_call_input() Read input data to function as byte array

none

void write_call_output(out_data) Write output data for function
int chain_call(name, args) Call function and return the call_id
int await_call(call_id) Await the completion of call_id
byte* get_call_output(call_id) Load the output data of call_id

State

byte* get_state(key, flags) Get pointer to state value for key
byte* get_state_offset(key, off, flags) Get pointer to state value for key at offset
void set_state(key, val) Set state value for key
void set_state_offset(key, val, len, off) Set len bytes of state value at offset for key
void push/pull_state(key) Push/pull global state value for key
void push/pull_state_offset(key, off) Push/pull global state value for key at offset
void append_state(key, val) Append data to state value for key
void lock_state_read/write(key) Lock local copy of state value for key
void lock_state_global_read/write(key) Lock state value for key globally

Dynlink void* dlopen/dlsym(...) Dynamic linking of libraries

POSIX
int dlclose(...) As above

Memory void* mmap(...), int munmap(...) Memory grow/shrink only
int brk(...), void* sbrk(...) Memory grow/shrink

Network int socket/connect/bind(...) Client-side networking only

WASI

size_t send/recv(...) Send/recv via virtual interface

File I/O int open/close/dup/stat(...) Per-user virtual filesystem access
size_t read/write(...) As above

Misc int gettime(...) Per-user monotonic clock only
size_t getrandom(...) Uses underlying host /dev/urandom

Table 3: FAASM host interface (The final column indicates whether functions are defined as part of
POSIX or WASI [60].)

platforms such as Fastly [37] or CloudFlare [36], which also use WebAssembly, can only share
state through external distributed key-value stores for their workers [61, 62].

WASI & POSIX compatibility. This part of the host interface deals with application control of mem-
ory, files, network, clock, and random numbers within the limits of WebAssembly safety guar-
antees. The WebAssembly System Interface (WASI) [63] aims to standardise server-side We-
bAssembly. This means that user applications, which previously had to be compiled with an
unknown operating system target, can now be compiled for the more portable wasi platform.
The popularity of WASI is growing, and with it the number of programs that can run in Faaslets
without modifications.

Interface extensibility. Although WASI-core contains a fairly small number of essential operations,
it is not designed with serverless compatibility in mind. As such the FAASM host interface has
the issue of striving to be a sensible serverless interface, whilst having to support both POSIX
and WASI concepts. It is challenging to map existing POSIX/WASI concepts to serverless be-
cause those two system interfaces can conflict with each other. For example, POSIX and WASI
both have a concept of threads, but it can be non-trivial to figure out what their accompanying
synchronisation mechanisms should translate to.

Byte arrays. Function inputs, results and state are represented as simple byte arrays, as is all function
memory. This avoids the need to serialise and copy data as it passes through the API, and
makes it trivial to share arbitrarily complex in-memory data structures.

Page 19 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Sources Toolchain WebAssembly

Codegen Obj. file

JIT Executable

1) Compilation
 (untrusted)

2) Code generation
 (trusted)

3) Executable linking
 (trusted)

WebAssembly

Obj. file Host iface+

Figure 3: Creation of a Faaslet executable

5.4 Building FAASM functions

Each function in FAASM is first compiled to WebAssembly and uploaded to the system. To convert
this into an executable, it needs to be combined with the host interface and other FAASM helper li-
braries. This process is outlined in Figure 3 and is made up of three steps, with the user only aware
of the first. This first step generates a WebAssembly module that can safely handled onwards thanks
to the WebAssembly guarantees [32]. FAASM relies on a trustworthy open-source WebAssembly em-
bedder, WAVM [64] and LLVM-JIT libraries [65], to validate and manipulate WebAssembly modules
and object code, which make up the second and third steps. A more detailed description for C/C++
functions is as follows:

1. The user project and the FAASM public library function declarations are compiled to a We-
bAssembly module using the FAASM toolchain. The library functions are unresolved symbols,
which means that they are declared as import functions in the module. The user can then up-
load the Wasm module to a FAASM host.

2. The Wasm module is verified by the embedder and compiled to an object file that can be linked
with the FAASM libraries later. This allows to update the host interface without recompiling the
user’s project.

3. The library public function definitions are provided as export functions and intrinsics along
with the rest of the host interface. Those are linked with the object files and the linker can now
resolve the previous import functions and output a trusted executable.

In step 1, the user compiles their code using the FAASM toolchain that includes the popular LLVM
compiler infrastructure [65] (i.e., Clang, compiler-rt, libcpp, etc.), which was built to cross-compile
to WebAssembly. The shipped libc is musl [66], a small and fast libc implementation compared
to the traditional glibc [67]. FAASM is also compatible with dynamic languages too. It supports
the ubiquitous CPython language runtime for which the host interface supports dynamic library
loading. FAASM relies on projects such as Pyodide to compile the main scientific Python packages to
Wasm [68, 69] and import them in user programs.

5.5 State

The FAASM state is maintained by a key-value (KV) store of byte arrays, which can hold arbitrary
data without synchronisation overheads. It is accessed by the user through a two-tier approach.
Each level can be locked independently depending on the consistency model required by the user’s
application.

Global state: Any distributed KV store, which in our prototypes is Redis [46]. Faaslets can push local
changes to write to the state or pull to update the local value. An implementation of a simple
distributed lock with timeout can be used by Faaslets to synchronise.

Local state: The local replica of the state value is mapped to shared-memory regions of the co-located
Faaslets. A local read-write lock can be used to synchronise access to the local state.

FAASM is agnostic as to the specific KVS used for its global state tier. In CloudButton we use
Redis provided by the shared disaggregated resource layer as shown in Figure 1.

Page 20 of 58

H2020 825184 RIA
31/7/2020 CloudButton

5.6 Scheduling

The scheduling policy is crucial for having efficient state-sharing. Faaslets provide the sharing mech-
anisms to utilise the FAASM state efficiently but it is up to the scheduler to provide an efficient policy
to co-locate Faaslets running the same function. FAASM defines warm nodes as being hosts on which
the state on which an instance of the Faaslet Wasm module is already loaded. Each node is aware via
the global state of the list of warm nodes for a given user function and can offload work if necessary
when it reaches saturation. The FAASM scheduler is similar in this regard to a distributed shared state
scheduler such as Omega [70]. The metadata of the Faaslet runtime is serialised in a protocol buffer
message [71] sent between workers to instruct the welcoming host on which Faaslet it needs to run.

This scheduling policy is sufficiently simple and self-contained that FAASM can be executed us-
ing a number of disaggregated compute platforms. In CloudButton we use Knative as shown in
Figure 1. We integrate CloudButton with Knative by running FAASM runtime instances as Knative
functions that are replicated using the default autoscaler. The system is otherwise unmodified, us-
ing the default endpoints and scheduler. The default Knative scheduler passes functions to FAASM

runtime instances in a round-robin fashion, after which they will share work amongst themselves as
described above.

Page 21 of 58

H2020 825184 RIA
31/7/2020 CloudButton

6 FaasMP: Transparent use of OpenMP APIs with FAASM

OpenMP is a popular parallel programming API based on multi-threading and shared memory. It
is used in several domains including machine learning [72], linear algebra [73] and big data [29].
OpenMP encourages programmers to distribute code across threads, explicitly specifying which data
is shared and which data is unique to a given thread. Existing OpenMP implementations target a
single host, but the underlying concept of small, concurrent tasks lends itself well to a serverless
programming model.

6.1 Background: Open Multi-Processing (OpenMP)

OpenMP is an API in the form of compiler directives or pragmas and a runtime library to write cross-
platform multi-threaded programs for Fortran and C/C++ on shared-memory devices [74]. It is
supported by every major C/C++ compiler [75, 76] and, due to its popularity in the HPC commu-
nity, it is also implemented in multiple scientific compilers [77]. Its programming model follows the
fork/join model in which all threads share a common address space. Only the thread stack is private
to them along with explicitly marked private variables.

The initial root directive, namely #pragma omp parallel, is placed on top of a code block, to in-
dicate that this section should be run in parallel. Other directives can be used inside of this parallel
section to perform common parallel programming operations such as creating a critical section, wait-
ing for other threads, or distributing slices of an array to threads. At compile time, parallel sections
are extracted into functions, shared variables are made into stack variables, and the directives are
transformed by the compiler into calls to the compiler-specific runtime library that is responsible for
running the extracted functions in parallel. At runtime, the compiler-specific runtime library invokes
threading APIs to parallelise the code.

OpenMP is still under active development after more than two decades since its original release.
Recent versions focus on supporting GPUs [74]. OpenMP’s most notable peer in the HPC field is
MPI, which is the de-facto standard for distributed applications. The two APIs are complemen-
tary and often used together, with OpenMP providing local parallelism, and MPI distributing tasks
across hosts [78]. Existing work has attempted to remove this dependence on MPI by both adding
distribution to OpenMP itself (§6.2), converting OpenMP to MPI [79], and offloading OpenMP to the
cloud [30].

6.1.1 OpenMP API

OpenMP is intuitive for a majority of programmers thanks to its shared-memory model that allows
for incremental addition of parallelism. Its paradigm is based on the fork/join model where a master
thread (with an id of 0) forks into slave threads (id > 0) that can run a code block marked with the
parallel pragma. Threads have access to common synchronisation mechanisms such as locks or
barriers. We describe those as core in Table 4, and we will use their descriptive names to refer to them
(e.g. critical or barrier). The rest of the API in the table can be divided into two categories: (1) the
task API which we will not implement because it is not widely used in practice even though it could
fit well into a serverless model by replacing glue code and ad-hoc await mechanisms; and (2) the
GPU API specifically for GPU-based processing.

The pragmas are accompanied by public library functions declared in omp.h to interact with the
OpenMP runtime for operations such as getting the thread number or setting the next number of
threads. Code examples can be found in the next section, which highlight the reasons why OpenMP
is so popular:

1. Most idiomatic OpenMP code still works when compiled with non-OpenMP compilers, which
means that programmers can often ignore the OpenMP semantics to understand an application.
This makes OpenMP simple.

2. The burden of using low-level platform-specific parallel APIs such as pthread and identifying
shared variables is put on the compiler. This makes the code portable.

Page 22 of 58

H2020 825184 RIA
31/7/2020 CloudButton

TYPE PRAGMA DESCRIPTION

Core

atomic Atomic access to memory location.

barrier Synchronisation of all threads in this region.

critical Next codeblock is a critical section.

flush Synchronise the view of the objects in memory.

for [simd] Distribute the for loop to the threads [with SIMD instructions].

master Next codeblock should only be executed by master thread.

parallel [reduce] Start of a parallel section [with a variable to accumulate at the end].

single Next codeblock should only be executed by one thread.

Tasks

task Define a task.

taskgroup Specifies which tasks to wait on.

taskloop [simd] Distribute the loop as tasks.

taskwait Wait for child tasks.

taskyield Suspend current task.

GPU target & distributed OpenMP 4.2 and above clauses for GPU control.

Table 4: Overview of main OpenMP pragmas

1 int main(void) {
2 int number_of_threads = 0;
3 # pragma omp parallel
4 {
5 number_of_threads += 1;
6 }
7 return number_of_threads;
8 }

Listing 12: Racy thread-count.c OpenMP example

3. The runtime behaviour gives predictable performance [80]. Users who avoid expensive oper-
ations such as long critical sections, frequent forking and joining can expect linear performance
with respect to the number of cores.

6.1.2 Compiler code transformation

The compiler performs code transformations on the abstract syntax tree (AST) to convert the parsed
OpenMP code into regular C/C++ code that can be code generated. Listing 12 is a basic OpenMP
program that counts the number of threads that execute a parallel section marked with the directive
pragma omp parallel and returns it.

We instruct the OpenMP compiler to interpret the OpenMP pragma by using the OpenMP flag:
clang -fopenmp count-unsafe.c. Intuitively, we can understand that the parallel section has been
given to a thread per core. The variable number_of_threads was shared automatically, such that
each thread could increment it. We show in Listing 13 what the compiler’s internal representation of
the program looks like if we could convert it back into C++ after the compiler applied the OpenMP

Page 23 of 58

H2020 825184 RIA
31/7/2020 CloudButton

1 static void parallel_section(int *number_of_threads)
2 {
3 *number_of_threads++;
4 }
5

6 int main()
7 {
8 int number_of_threads = 0;
9 __kmpc_runtime_fork(parallel_section, &number_of_threads);

10 return number_of_threads;
11 }

Listing 13: Output of the compiler transformation (simplified)

transformations.
On lines 1 to 4 of this source code, the compiler extracts the parallel section into a new function,

called parallel_section. On line 9 in the main function, instead of calling the parallel_section
function directly, the compiler generates a call to the runtime library function __kmpc_runtime_fork,
passing the function parallel_section as an argument. On lines 8 and 9, the shared variable is
created on the stack and given by reference to the parallel section. The runtime library forking
function, called __kmpc_fork_call in Clang’s implementation [75], is responsible for running the
parallel_section function on each available OpenMP threads.

Compiling the same count-unsafe.c program (Listing 12) in a traditional manner with clang
count-unsafe.c, works and returns 1 because the OpenMP # pragma omp parallel compiler direc-
tive is ignored by the compiler unless OpenMP compilation is specified. This shows that OpenMP
can be a non-intrusive API.

Being based on the C/C++ languages, OpenMP programs offer little concurrency safety and can-
not check at compile time for unsafe memory operations. Our claim that OpenMP code can be en-
tirely transparent does not apply to runtime library functions calls, for example, that users must place
behind pre-processor #ifdef OpenMP blocks. Race conditions, deadlocks, and other concurrency-
related issues such as false sharing [81] may still happen when running an OpenMP program. The
concurrency of execution is not abstracted away for the programmer, only the platform-specific con-
structs.

In the initial program (Listing 12), no synchronisation mechanism was used for number_of_threads,
which means that our implementation was racy.3 Several low-level concurrency primitives are avail-
able for threads to synchronise (§6.1.1). Listing 14 shows (i) how the critical pragma can be used
to synchronise our program (line 9); (ii) how to control the visibility of variables explicitly with
default(none) and shared (line 7); and (iii) how the public library function omp_get_max_thread can
be used to obtain in advance the number of threads the next parallel section will run with (line 5).

6.1.3 Runtime library

Popular C/C++ compilers supporting OpenMP implement their own runtime libraries such as In-
tel’s compiler libiomp, the GNU C/C++ Compiler (GCC) with libgomp [76] or Clang/LLVM and
libomp [75]. Compilers have varying levels of support for OpenMP API, which has grown over time.
Unfortunately, LLVM’s library, already the most complex library because of its multi-platform sup-
port, has been implementing undocumented ABI compatibility with libgomp, which we will need to
circumvent for our WebAssembly implementation.

3Technically, this is dependent on the platform that the program runs on (i.e. atomic increments). OpenMP shared-
variables are however not guaranteed to be synchronised. Threads have a local view of the shared-data that needs to be
flushed and/or synchronised to be valid.

Page 24 of 58

H2020 825184 RIA
31/7/2020 CloudButton

1 #include <assert.h>
2 #include <omp.h>
3

4 int main(void) {
5 int expected_num_threads = omp_get_max_threads();
6 int number_of_threads = 0;
7 # pragma omp parallel default(none) shared(number_of_threads)
8 {
9 # pragma omp critical

10 {
11 number_of_threads++;
12 }
13 }
14 assert(number_of_threads == expected_num_threads);
15 }

Listing 14: Complete thread-count.c

6.2 Related work on distributed OpenMP

Whilst it is possible to use MPI and OpenMP together for big data applications, it is not straightfor-
ward, with no support from the frameworks themselves. More crucially for this project, MPI applica-
tions fundamentally embrace a serverful design (§2), trading off multi-tenancy and isolation against
performance. The main challenge for distributing OpenMP-only programs is that the API and user
applications are designed assuming the shared-memory access latency is similar to the rest of the
memory. We can distinguish three different approaches for distributed OpenMP that tackle this chal-
lenge in different way: (i) by translating it to MPI; (ii) by using distributed shared memory; (iii) by
offloading to big data platforms in the Cloud. All these approaches require deployment in exclusive
clusters and cannot scale based on the application’s demand.

6.2.1 OpenMP to MPI translation

This strategy first operates source-to-source translation from OpenMP to Single Program Multiple
Data (SPMD), the bases of MPI and generates collective communication code based on the semantic
of the translated OpenMP constructs [82, 79, 83]. This approach also requires a runtime system to
monitor, schedule and optimise communication between the threads and perform dynamic dataflow
analysis. For example, the runtime needs to manage a control flow graph for every array involved
in the global communication, or pre-fetch data when parallel sections are called in a loop and the
runtime can identify recurring patterns. The performance of these approaches thus relies mainly on
their runtime and does not scale past 100 threads.

6.2.2 OpenMP on software distributed shared memory (DSM)

This approach is the most popular because page-based distributed shared memory (DSM) can sup-
port existing code with little modification and so was released in a commercial compiler, Intel Cluster
OpenMP [84], that provided support for compiling OpenMP applications to run on small clusters.
OpenMP allows most of the program’s execution to be consistent only around the synchronisation
points thereby allowing distributed processes to operate on their local DSM pages efficiently. More-
over, we can expect users to optimise for page locality, which is an optimisation pattern for page-
based DSM. We detail below the details of the two main systems and our takeaways from the litera-
ture for this project.

Intel Cluster OpenMP. Cluster OpenMP (ClOMP) [84] was released in 2006 as part of the Intel
C/C++ and Fortran compiler. The only porting step required by the Intel compiler was data privati-
sation and marking certain variables explicitly sharable for the DSM. However, ClOMP showed bad

Page 25 of 58

H2020 825184 RIA
31/7/2020 CloudButton

performance on fine-grained data distribution, especially through ethernet, and was outperformed
or equalled by MPI on existing applications [85]. The DSM layer was more suited for procedural
Fortran than for C/C++ pointers logic and as such showed poor performance for common program-
ming patterns like C++ STL algorithms. The minimal overheads measured in micro-benchmarks for
a distributed reduce was three orders of magnitude slower than local memory [85], but those figures
could be amortised for large parallel sections.

libMPNode. libMPNode is a modification of the Linux target only GNU libgomp that run on Pop-
corn Linux which provides thread migration and multiple reader/single writer protocol for paged-
granularity DSM in a cluster. Threads are assigned to nodes using a new node keyword thus hin-
dering the programs portability and not offering support for unmodified applications. They further
need to optimise their algorithms based on the underlying DSM page size to minimise co-location.

Thanks to the fixed thread placement, it implements some OpenMP directives in a way that re-
quires a minimal number of open network communication (one per node, instead of one per thread),
which allows for good scaling across nodes after fine-tuning the code for distribution. Other issues
include a lack of multi-tenant isolation, and an excessive resource footprint, notably from the distri-
bution layer.

Summary of DSM-based OpenMP. libMPNode needs to prevent DSM page thrashing that occurs
when multiple nodes are trying to fetch the same remote page (but not necessarily the same data)
by placing contention element on separate pages. FAASM’s distributed state operates at a byte-level
granularity rather than a page-level granularity, hence does not face this problem. Each state value is
represented as an arbitrary array of bytes which is transferred over the network when needed, and
placed in a fixed region of a host’s local memory.

libMPNode makes the remark that OpenMP allows for threads to have a local view of the data
until it is explicitly flushed or reaches a synchronisation point, but that their DSM enforces sequen-
tial consistency for every page access. They suggested they could improve their performance if their
DSM could differentiate between the two sorts of accesses. We will incorporate this in our design by
using the fine-grain control of the FAASM local and global state consistency to only enforce appropri-
ate levels of synchronisation[25].

With ClOMP, the failure of one process terminates the whole program, monitored through heart-
beats, and the failure mode of libMPNode is assumed to be similar. OpenMP is not originally designed
for fault-tolerance, and general distributed fault-tolerance is not achievable for existing programs but
a subset of the API can be made fault-tolerant in a serverless environment.

Results from the DSM approaches showed that OpenMP program scalability does not imply
page-based DSM scalability [85].

6.2.3 Offloading to the cloud

The recent addition of target devices to OpenMP has led to the idea of using the OpenMP API as
a Spark client [86] for Map-Reduce jobs [30]. This can be used in applications like edge-compute
for mobile devices [87]. This approach tries to democratise the utilisation of the cloud by re-using
a known C/C++ API, but falls short in terms of generalisability, fine-grained scalability, or useful
applications hindsight.

6.3 FaasMP Design

Next we describe FaasMP, an implementation of OpenMP built into FAASM, which takes unmodified
OpenMP code and automatically executes it as serverless functions. This is done by intercepting calls
to the OpenMP runtime library, and converting tasks to serverless functions on-the-fly.

Our key design idea on how to achieve our goal of making OpenMP serverless is to implement
a new OpenMP runtime library. Our library, FaasMP, replaces the runtime library of the compiler
such as libomp, libiomp or libgomp, which is in charge of the threading specifics of the platform.

Page 26 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Category Description POSIX System call Wasm Serverless

Memory Grown/Shrink heap
mmap/munmap 3 3

brk/sbrk 3 3

Forking
Create thread clone 3 3∗

Shared-memory mprotect 3 3∗

Scheduling
Cede CPU sched_yield 3 ∼
Pin thread to CPU core sched_[get|set]affinity 3 7

Signals
Set signal handler rt_sigaction 7 ?∗∗

Set allowed signals rt_sigprocmask 7 ?∗∗

Synchronisation
Fast user-space locking futex 3 7

Auto-lock release [get|set]_robust_list 3 ?∗∗

*: Never done together; **: Further semantics ramifications

Table 5: WebAssembly and serverless compatibility for libomp system calls

6.3.1 Platform requirements for shared memory multi-processing

In this section, we explain in a practical fashion what concepts an existing, efficient, implementation
of an OpenMP runtime library is based on. We start by looking at the open-source code of libomp,
the LLVM runtime library [88]. Note that libomp is a large and complex codebase, which supports
both UNIX and Windows platforms. It will be important to study the LLVM codebase, notably for
understanding its private API.

Next, we use small OpenMP code examples and strace—a Linux utility to trace system calls [89]—
with a filter to only show activity from libomp. Table 5 shows the observed system calls and groups
them into categories. The system calls are ticked if there is a reasonable equivalent implementation
in WebAssembly and if there exists or could exist a serverless implementation of the system call.
WebAssembly can support most of the required operations, but many operations in serverless are
rendered difficult, notably because of the distribution of the functions onto inhomogeneous domains.
We now explain each category in more detail.

(a) Memory. Local memory management is already supported transparently in stateful serverless
environments [25, 26] but FAASM additionally supports local shared-memory between Faaslets.

(b) Forking. The other categories of the table all depend on the chosen implementation of clone,
which is called with the CLONE_THREAD flag: it does not fork the process but creates a thread in
the same address space [58]. Although with Crucial [26] (see §4), we also explore the use of AWS
Lambda [35] as a “cloud thread” executor, the lack of shared memory in such cases is an issue when
providing efficient threads.

Conversely, Faaslets [25] are capable of sharing memory, not through a forking interface but
through calls to mmap using the MAP_SHARED parameter. This differs from a POSIX thread that shares
the entire process memory. Faaslets share only discrete memory regions in the WebAssembly mem-
ory through the FAASM state API because the general process memory needs to be isolated. We ex-
plore extending this behaviour to allow for thread forking using the WebAssembly threading mech-
anism proposal implemented in WAVM and use Faaslets as thread executors.

(c) Scheduling. Yielding the CPU can be done in WebAssembly and in serverless computing in
general. In distributed systems with weak scheduling guarantees, however, it may not be possible
to yield to a specific thread, which is a useful mechanism in cooperative multitasking and even a
necessity to implement high-performance synchronisation constructs.

Page 27 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Similarly, the CPU affinity system calls to pin a thread or a process to a CPU core could be
allowed in Wasm but is difficult to implement in a multi-tenant serverless environment and seem to
go against the principles of elasticity of the compute layer. We can further infer that if libomp needs
to pin threads and become cache-conscious, it relies on a predictable memory model, preferably
homogenous across threads. This could also be evidence of thread pooling by libomp.

(d) Signals. Signals are a POSIX form of inter-process communication (IPC), which, if integrated
into a serverless platform, may help solve a commonly raised FaaS issue: the lack of effective direct
communication between functions. There are, however, concerns about such support in the FAASM

host interface:

1. How to support signals in a WASI-based host interface, when WebAssembly does not have
processes and thus does not support signals?

2. How to implement efficient and/or fault-tolerant distributed signalling?

Signals are often used for performing asynchronous I/O, but FAASM proposes other, more id-
iomatic, ways of doing asynchronous I/O, by spawning a Faaslet to handle an I/O request for exam-
ple. Both FAASM and OpenMP encourage the use of shared memory as the preferred communication
mechanism, and therefore supporting POSIX signals would not provide any benefits for supporting
existing OpenMP programs.

(e) Synchronisation. Synchronisation and consistency mechanisms are perhaps the most difficult
mechanisms to integrate into a distributed serverless environment. For example, a futex is a mech-
anism for fast userspace locking, and threads can have a robust_list of futexes that they hold and
that should be automatically released if the thread terminates without explicitly releasing them [58].
The futex interface has strong performance guarantees, and the robust_list has strong safety guar-
antees. The CAP theorem [43] can immediately instruct us of the difficulties arising when designing
a distributed system trying to deliver these guarantees. Moreover, depending on the implementa-
tion of those mechanisms, user applications may be exposed to new classes of issues (e.g. distributed
deadlocks, starvation, and thrashing) that programs were not designed for.

6.3.2 Challenges when distributing OpenMP

Serverless and FaaS requires a fundamentally distributed programming model. Therefore, after
studying the local requirements above, we consider previous attempts at distributing OpenMP to
share work across many nodes, namely paged-based software DSM and MPI (§6.2). Table 6 sum-
marises the desirable features (or lack thereof) that the related work found useful (or missing) from
their mechanism of choice. We contrast those within the FAASM serverless environment which
presents a unique combination of features compared to previous approaches.

Note that DSM and Faaslets do not have to add complex source-to-source translation and dataflow
analysis to the OpenMP compilation process to apply their distribution mechanisms [90, 84] whereas
the MPI approach needs to first transform OpenMP to MPI [82]. MPI also emphasises data im-
mutability, which is in direct contrast with how existing OpenMP applications are written, i.e, they
use shared mutable memory and critical sections to synchronise manipulation of shared data.

Network efficiency. MPI is the most network efficient mechanism when carefully programmed for.
By emphasising immutability, it requires only a single network connection for updating synchronised
remote objects. DSM must modify the page with the lock on it and the page with the data, and
Faaslets in the general case have to perform multiple network connections to update the global state:
locking the global state, retrieving the data, transferring the data after update, and unlocking the
global state.

Faaslets are, however, like MPI, capable of only putting on the wire small objects and not whole
pages of page diffs like in DSM. FAASM cannot aggregate communications like MPI [79]; libMPNode [90]
can implement OpenMP concepts hierarchically (e.g. operate a local reduction first then open a single
network communication per node to aggregate the results).

Page 28 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Category Property DSM MPI FAASM

Paradigm
similarities

Does not require additional compilation steps other
than OpenMP transformations to be in distributed

3 7 3

Pointer-level access to mutable shared memory 3 7 3

Network
efficiency

Single overhead for synchronisation and data transfer 7 3 7

Network-efficient aggregation of communications 3 3 7

Smallest possible bytes on the wire for shared data 7 3 3

Consistency Local and global control of state consistency 7 3 3

Remote
memory
access

Guaranteed progress (no thrashing) when accessing
contentious remote objects

7 3 7

Fine-grain control on state placement on the nodes 7 3 3

Transparent remote data pre-fetching 3 7 7

Fault
tolerance

Data replication 3 7 7

OpenMP program carries on after node failure 7 7 NA

Multi-
tenancy

Scale in and efficient resource utilisation 7 7 3

Tenant isolation on shared boxes 7 7 3

Table 6: Distributed OpenMP feature map

Consistency. Control over global and local consistency in MPI and FAASM avoids needless memory
waits caused by enforcing sequential consistency for all DSM operations when OpenMP allows for
relaxed memory ordering on many operations. Indeed even if a node possesses the latest version of
a page, the DSM must perform a remote page invalidation before allowing the threads to write to
the page. OpenMP programs only need to perform such remote protocols around synchronisation
points and as such do not need the entirety of their state to be consistent.

Remote memory access. DSM systems are prone to trashing when two nodes try to access the same
remote page, which can be especially problematic in OpenMP when two popular locks are put on
the same page. This forced previous approaches such as libMPNode [90] to allocate distinct data on
different pages.

DSM tends to be mostly transparent to the user compared to MPI, and they thus do no share
the same optimisation possibilities. For example, MPI users can pull only the required data on each
node, while DSM users can have a runtime system to monitor and prefetch pages based on recurring
access patterns [82].

Fault tolerance. DSM allows for page replication but requires the program to be tolerant to node
failures for which OpenMP is not a suitable programming model. Previous work would completely
abort programs upon node failure. Although MPI programs can exhibit some fault tolerance, no
OpenMP to MPI approach can make any recovery guarantee on node failure or network partition.

Multi-tenancy and isolation. We reach the same conclusion as for the local platform requirements
(§6.3.1): the integration of an OpenMP runtime in a dynamic shared environment is challenging, and
this must not hinder the isolation guarantees, low resource-footprint and scalability of the FAASM

layer. These are primary requirements placed on our implementation and design that must be pri-
oritised for our contributions to FAASM to be accepted.

Page 29 of 58

H2020 825184 RIA
31/7/2020 CloudButton

6.3.3 Strawman design: compiling libomp.so to WebAssembly

Given the above requirements and challenges, we can exclude a design that is commonly used in
related work and that was originally suggested for this project. It consists of compiling Clang libomp
for the FAASM platform and provide the following modifications: (i) use Faaslets instead of threads
as the parallel mechanism; and (ii) secure the library to be used in a possibly adversarial environment
and ensure fair resource access.

Previous approaches to distributed OpenMP worked by extending an existing compiler and its as-
sociated runtime (§6.2). For example, Cluster OMP [84] is part of the Intel compiler package, whereas
libMPNode [90] chooses to adapt GNU’s libgomp [76] library after describing LLVM’s libomp [88] li-
brary as much more complex because of its multi-architecture and multi-platform support. However,
our choice is dictated by other factors than just ease of implementation. The GNU C/C++ compiler
does not support WebAssembly, but LLVM does and is already in the FAASM toolchain. It is thus in
principle possible to compile the OpenMP runtime library of Clang to WebAssembly and adapt the
platform to support the necessary system calls and libc mechanisms mentioned previously in Table 5
to run in a distributed fashion. This holistic approach is also taken by FAASM to extend the host in-
terface to support specific system calls needed by language runtimes. We outline the required work
for this design:

1. implement clone in FAASM to spawn Faaslets;

2. compile libomp to WebAssembly and make multi-tenancy changes in the runtime; and

3. implement futex to provide lightweight synchronisation for Faaslets.

This approach may be more comprehensive than our design (§6.3.4), but the steps listed above
are non-trivial, dependent on each other’s success, and require change to three complex codebases
(FAASM, Clang++ and libomp [91, 65, 88]). There are two other blockers for this approach: (1) as
explained in §6.3.1, the necessary systems calls do not fit a WASI interface, and even less in a server-
less host interface; (2) operating at the system call level does not give enough information to include
the necessary performance optimisations for distributing OpenMP. Previous approaches [82, 79] use
techniques such as inserting tracing code at compile time to detect patterns in remote data accesses,
and employ careful thread placement and message aggregation to optimise the application runtime.
The current FAASM scheduler and state do not have mechanisms to use this information to perform
optimisations (e.g. physical co-location of data and Faaslets or pre-fetching). This design would
therefore suffer from the issues other runtimes have eliminated unless extra work is put into chang-
ing FAASM distribution mechanisms.

6.3.4 Design

One of the goals of the CloudButton project is to allow existing OpenMP programs to run in a
serverless environment. Let us assume it is possible to apply the OpenMP compiler transforma-
tions to the original application and compile the result to WebAssembly. Since the behaviour of the
OpenMP transformations is dictated by the compiler’s runtime library, we can replace the compiler’s
library with our own, libfaasmp. Our library then leverages WebAssembly and Faaslets to provide
the required isolation guarantees and to distribute the OpenMP threads.

Re-implementing the library allows us to satisfy the serverless isolation and multi-tenancy re-
quirements. We implement two execution contexts: (i) a local one that seeks to match the native local
library performance of the compiler’s library; (ii) a distributed context that uses Faaslets to scale the
application. This design prescribes two required components to fulfil our objective of seamlessly
supporting existing code:

1. A cross-target build system to compiling existing code to both native binaries and Wasm mod-
ules after applying OpenMP transformations. This should be integrated with the first step of
the FAASM build process (§5.4) and be highly usable.

Page 30 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Positives Negatives

Incremental support of the OpenMP API Only supports OpenMP

No runtime analysis required Implementation tied to Clang’s internal API

Individually optimisable OpenMP concepts Feasibility assumptions

Less radical design commitments from FAASM

Table 7: Critical analysis of the design

2. A Wasm OpenMP runtime library using faaslets for running OpenMP threads implementing
the main public and private OpenMP runtime library functions. Those functions are mostly
independent from each other and can be implemented one at a time.

Table 7 summarises the pros and cons of this design. This is not a holistic approach since we
only aim to support OpenMP threads, and the implementation will be tied to the compiler’s pri-
vate library API. However, compared to its main competing design (see §6.3.3), our design allows
for implementing and optimising OpenMP pragmas one at a time, instead of focusing on the imple-
mentation of low-level concepts that will likely fail to scale (e.g. futex have to support all three of
distributed locks, barriers and reduction sections). We rely on the compiler doing the heavy work
to prepare the code, and do not require to modify the compiler to insert additional runtime analysis
clues for optimisation which will save implementation time for this project. This design also inte-
grates more nicely with FAASM by not having to commit part of the host interface to the OpenMP
design but is instead an optional additional feature which helps with our objective of contributing
back to the project.

6.4 FaasMP architecture

In this section, we present the integration with FAASM of the design that we explained. Figure 4
describes what steps have to be taken in order to start executing a parallel section. The start of a
parallel section is marked by an #omp parallel pragma that gets compiled by Clang to the libomp
function __kmpc_fork_call with arguments: (i) function, a pointer to the function the OpenMP
threads will be executing, (ii) args, a list parameters—mainly shared variables—to call the function
with, (see §6.1.2 for the technical details). The timeline of the forking process is thus:

1. A thread calls __kmpc_fork_call(function, args) as described in §6.1.1.

2. The translation layer: (i) looks up function in the WebAssembly module function table (function)
and (ii) looks up args in the WebAssembly address space (args).

3. Threads are created using one of two mechanisms:

- When using Wasm threads inside a Faaslet, TLS is set for the current parallel section, and
the function is executed in the user’s thread pool.

- When running in new Faaslets: (i) the execution state is snapshotted to be restored on re-
mote hosts; (ii) the Faaslets are scheduled to run function(args) and given the metadata
about the current parallel section to set the runners TLS.

The translation layer holds the compiler-specific OpenMP library functions and defines a bound-
ary that limits the impact of compiler changes in our implementation. We use WAVM intrinsic func-
tions to define the compiler private API function to be able to manipulate the function table and the
memory. This layer is therefore tied to both the compiler and the Wasm embedder executing the
code. The latter is less of an issue than for Clang’s internal API, because we only use the public

Page 31 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Figure 4: Architectural overview of the forking process (Purple is for FaasMP).

API of the WAVM library. The functions are exported through normal WebAssembly import/export
mechanisms.

The architecture allows to switch between execution modes seamlessly and also can handle re-
cursion. The user code does not need to be recompiled to switch between the two, and the choice
of library backend is simply a configuration choice that can vary at runtime and even be different
between nested sections. The caller invoking a fork can thus be any thread of execution, OpenMP or
not.

6.4.1 WebAssembly OpenMP runtime

We implement a multi-tenant library inside FAASM that uses local WebAssembly threads as the ex-
ecutors for OpenMP threads inside a Faaslet. We ensure that our work is usable by existing appli-
cations and then explain how we built a high-performance local OpenMP library in a multi-tenant
environment (§6.5).

It is unknown how to apply OpenMP transformations to the user code and compile the result to
WebAssembly. Multiple issues can arise when trying to do so, for example the generated code by
the compiler may depend on the binary format of the executable, but WebAssembly modules are not
compatible with the traditional ELF-format; or it may be necessary to change the code generation in
order to use Faaslets as threads, even though we aim to not have to modify the compiler.

Page 32 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Transformation and distribution. We argue the transformed OpenMP code is in a suitable state
to be distributed following the compiler pass. As shown in §6.1.2, after the compiler applied the
OpenMP transformations, the original OpenMP program is free from OpenMP-specific constructs
and (i) the parallel code is extracted to separate functions, (ii) the shared variables are clearly sep-
arated as arguments to those functions, and (iii) the OpenMP pragmas are translated into calls to
well-defined runtime library functions [75]. As such, if there existed a compiler that could apply
the OpenMP transformations to a program and cross-compile the result to WebAssembly, we would
have the necessary symbols, shared variable control and hooks into the code to be able to implement
the distributed runtime library.

Novel use of LLVM. It is not necessary for the transformation and compilation processes to be
handled by a unique compiler, the OpenMP transformations are typically applied on a compiler’s
internal representation, but those can sometimes be ported to other compilers IRs. Clang [65] is the
only single compiler that can do both steps and conveniently is already part of the FAASM toolchain.
To our understanding, we are the first to employ the -fopenmp and -target=wasm32 flags together,
which is a stable combination of flags only for recent LLVM releases4.

The result of our prototype showed that with a suitable modification of the compiler in the
FAASM toolchain, we can compile OpenMP programs such as the ones in Listing 14. Using tools
like wasm-objdump[92] that can read WebAssembly symbols in Wasm modules, we also verify that all
the expected private library symbols are available and what we expect based on the libomp compiler
reference [75].

6.4.2 OpenMP toolchain

We must ensure that it is seamless for users to cross-compile their existing OpenMP application to use
our runtime. FAASM already integrates with non OpenMP applications by shipping a sophisticated
C/C++ WebAssembly toolchain as well as a library providing helper features for the user code (e.g.
VectorAsync to push elements to the state [25]). We modify the Clang configuration in the toolchain
to include the OpenMP features required for the shipped compiler to support the OpenMP code
transformations and provide a static library released with FAASM in the toolchain system root.

Static library. We add a new library, faasmp, to the libraries distributed by FAASM to handle OpenMP
symbol resolution at compile time and provide helper and debugging features.

There are two types of function declaration that the compiler needs to be aware of. First, OpenMP
prescribes that the public runtime functions are declared in the omp.h header [74]. Since we do not
modify the OpenMP API as per our objectives, we simply include the LLVM’s standard OpenMP
header to the toolchain. That header contains all the declarations up to the version 5.0 of OpenMP
and useful extensions that existing OpenMP programs might rely on so providing them helps with
compatibility. Second, the private runtime library calls are injected into the AST and thus do not
require additional changes to the toolchain.

The Wasm linker needs to be aware of the compiler’s public and private library symbols found in
the IR. LLVM’s -fopenmp flag does not only instruct the compiler to apply the OpenMP transforma-
tions but also allows for the dynamic linking of the compiler’s shared library libomp.so that provides
those symbols. There is no WebAssembly mechanism hitherto for the linker to identify symbols that
will be available at runtime in the same way native dynamic compilation allows for. Dynamic We-
bAssembly linkers however provide a method to import global function symbols from static libraries.
The unresolved symbols are placed in a faasmp.import file along with the static library faasmp.a.
The linker uses the common file basename to match the two and add all the functions listed in the
import file to the final Wasm module as WebAssembly import functions.

Unfortunately, Clang adds data symbols to the transformation to be ABI compatible with the
GNU library and they were not documented in the libomp reference [75]. Resolving those symbols
in WebAssembly is a non-trivial exercise. Those symbols identifier cannot be resolved using the

4Support for Wasm started in LLVM-7 but was only stable from 8.0.0 onwards, although OpenMP’s libtarget is crash-
ing for this version. We have had issues with LLVM 9.0.0, crashing LLVM’s front-end when compiling certain OpenMP
programs to Wasm, but not with LLVM 9.0.1 and 10.0.0 so far when using our modified Faasm toolchain.

Page 33 of 58

H2020 825184 RIA
31/7/2020 CloudButton

import file technique because their name is not a valid identifier and because they are data symbols
of unknown sizes to the linker. Since it is not possible to prevent the compiler to add those symbols
during the transformation, we add definition for them in an assembly file that we integrate to our
static library archive, such that the user does not have to do additional linking to support those
symbols. Let us consider the example code given in Figure 6.4.2 that contains a reduce clause that
causes the generation of such a symbol symbols. Listing 15 shows the corresponding assembly which
is interpreted by the Wasm linker which is similar to how LLVM resolves those symbols [88].

.hidden .gomp_critical_user_.reduction.var

.type .gomp_critical_user_.reduction.var,@object

.section .data..gomp_critical_user_.reduction.var,"",@

.globl .gomp_critical_user_.reduction.var

.p2align 4
.gomp_critical_user_.reduction.var:

.int64 42

.size .gomp_critical_user_.reduction.var, 8

Listing 15: GNU ABI LLVM compatibility symbol for a reduce variable

Compilation example. Figure 5 shows how the OpenMP symbols resolution works when targeting
WebAssembly in the first step of the FAASM compilation process. The code contains a parallel section
with a reduce clause, and makes use of the runtime library function omp_set_num_threads to set the
desired number of threads for the next parallel section. The faasmp library header files are included
in the usual way before the OpenMP transformations are applied to the code to declare public library
functions and helpers. We will later use the early inclusion of the headers in the compilation process
to replace the program reduction types with ones backed up by the FAASM state when distributing
the application. The linker then finds the FAASM libraries, including faasmp, and lists all the public
and private OpenMP functions from the faasmp.imports file as import functions in the final We-
bAssembly module. The GNU compatibility symbols are added during the OpenMP transformation
compilation stage and are resolved during the linking stage by the z_Linux_asm.S assembly file.

6.5 Local library runtime implementation

In this section, we describe our implementation of a high-performance WebAssembly OpenMP run-
time, which also implements the necessary isolation and multi-tenancy requirements for its integra-
tion into a serverless environment. Our runtime is capable of efficiently running multiple unmodified
OpenMP applications within each Faaslet, and does not require users to provision and configure the
compute layer but instead relies on underlying serverless platform to dynamically scale based on the
demand from the Faaslets. The implementation of FaasMP requires creating parallel section (§6.5.1),
supporting work-sharing (§6.5.2) and synchronisation constructs (§6.5.3), and necessitates efficient
thread pooling (§6.5.4).

6.5.1 Forking with Wasm threads

As shown previously in Figure 4, the compiler translation layer is responsible for gathering the nec-
essary informations to fork the process and hand them over to the chosen library backend, in this
case, the local backend. The user application is originally running inside a Faaslet controlled by the
WavmModule class. That Faaslet can itself be an OpenMP thread that was previously forked by our
runtime.

OpenMP forking with WebAssembly threads. We perform the intra-Faaslet forking using the
current WebAssembly thread proposal mechanisms. Figure 6 shows how the stack allocation and
memory mapping that takes place within the original faaslet memory when spawning two OpenMP
threads. Two stacks (labeled Stack1, Stack2) are allocated from the original module heap to be used
by the two WebAssembly threads. Those threads are then executed given the function and args

Page 34 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Figure 5: Overview of the building mechanism and symbols resolution.

provided by the translation layer within the same WavmModule context as their parent to share the
environment of the forked Faaslet.

Nested parallel sections. We control the parallel section through a class called Level, named that
way because parallel sections can be nested inside one-another. The library needs to manage meta-
information about the tree formed by the nested parallel sections. We keep track of this hierarchy
because users can query about it at runtime with functions like omp_get_level that returns the num-
ber of nested parallel regions enclosing the calling thread. OpenMP runtimes such as libomp aggres-
sively optimise non-active levels (i.e. levels with just one thread), and the API prescribes users can
be aware of when such optimisations are taking place, e.g. using omp_get_active_level that returns
the number of active parallel regions enclosing the calling thread. The Level class is shared by all the
threads but is frequently accessed and thus cannot be synchronised. Instead of having to manage a
lock-free concurrent tree to control such information, the relevant data is passed down to the children
threads on creation of a new parallel section, and each Level is locally aware of its current depth and
active depth.

Runtime context information. The threads must be aware of their parallel context at runtime.
Level is also responsible for storing the parallel section information that are in majority immutable
and thus do not present synchronisation issues. A common pattern for OpenMP programs is to dy-
namically create an array of the size of the next parallel section’s number of threads to hold the results
they will be producing. The users can either query the runtime for the next number of threads, or
set the desired number of threads for the next parallel section. The OpenMP API allows for several
ways to set the next number of threads which take precedence over one another and might apply to
all future children parallel sections or only the next parallel section of this level. Level again is made
locally aware of those informations and we tested our implementation to mimic the behaviour of
libomp to not surprise the users or break their optimisations because of a different handling of levels.

Page 35 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Figure 6: WebAssembly thread shared memory and stack mapping

Multi-tenancy. Unlike existing OpenMP runtimes, our library serves multiple users simultane-
ously, an idea based CloudFlare’s suggestion of sharing libraries [36] to save resources. We use
thread local storage (TLS), a mechanism FAASM already trusts for managing its runtime tools be-
tween Faaslets, to handle the user’s OpenMP state. This shields us from some memory optimisa-
tions and implementation tricks that libomp can perform thanks to its shared static lifetime with the
program, but instead we gain on users isolation and resource efficiency.

Resource access and scheduling. Internally, FAASM spawns a number of worker OS threads on
each node it is deployed on, and multiple Faaslets can be safely executed concurrently on a single
machine. The local WebAssembly threads share the forked Faaslet’s fair resource access mechanisms
by inheriting the CPU and network cgroup of the process. The Linux completely fair scheduler [58]
handles the local scheduling under the cgroup constraints but still provides the same concurrency
guarantees as usual and thus will not change the expected behaviour of the application by the user.

Security. The compiler translation layer cannot trust its inputs which may have been fabricated
by malicious users calling the compiler’s private functions itself. This is indeed possible because
the private compiler library symbols are added in phase 1 of the faaslet building process that is not
trusted (§5.4). Function or data pointers can be handled safely thanks to the WebAssembly software
fault isolation guarantees, however, an important recurring argument provided to the library is the
current thread number (TID). Existing runtimes like libomp commonly use this number to index into
arrays, which if we also did so could lead to easy exploits. We instead use TLS and set the TID on
thread initialisation to retrieve it when needed. This mechanism is trusted because the TLS is outside
of the WebAssembly memory control and thus not in the user’s control.5

6.5.2 Loop support

We carefully mirror the behaviour of LLVM’s libomp [88] to handle the for pragma, OpenMP’s flag-
ship work-sharing feature, in order to preserve the fine tuning applications might have done around
them. The main part of the loop scheduling process in OpenMP boils down to calculating the loop
block limits assigned for each thread.

Static scheduling. The exact semantic of static loop scheduling is dependent on many factors. The
compiler’s private library API provides the overall lower and upper limits of the loop, the stride size
(incr) and the optional user-provided chunk_size that we also support. For a parallel section of
n threads with TIDs t1, . . . , tn, when the chunk_size is provided, the ith block limits, i ∈ [0, n) are
given by loweri = chunk× incr× ti and upperi = loweri − (incr× chunk).

When chunk_size is not provided, the direction of the loop, the size and the signedness of the
5Such security concerns could have been an issue for alternative design (see §6.3.3), since libomp was not designed with

security requirements in mind.

Page 36 of 58

H2020 825184 RIA
31/7/2020 CloudButton

iteration variable must be taken into account6 to avoid overflows in calculations and the loop is split
evenly between the threads by simple division of its overall size. A special case arises if the loop is
smaller than the number of threads in the current parallel section, in this case some threads are not
given any work to do while the others are given a single item of the loop.

Other concerns. OpenMP has many features to allow users to optimise parallel for loops, for ex-
ample the collapse clause allows to parallelise multiple nested loops automatically and users can
use different scheduling options like dynamic scheduling using pooling. We scrupulously test our
implementation to provide a similar behaviour to Clang and implement static scheduling since it is
the only scheduling we have encountered in existing programs. We leave implementing alternative
scheduling strategies as future work.

6.5.3 Threading and synchronisation support

A crucial part of a shared-memory parallel processing API is its synchronisation constructs. OpenMP
provides thread synchronisation mostly on a a per parallel section basis. The Level class can thus
be further extended to handle the level synchronisation. WAVM is using pthreads to execute the
underlying threads so the usual POSIX synchronisation constructs can be used to implement the
local OpenMP constructs.

Barriers are used substantially throughout the OpenMP API. The API has the explicit barrier
pragma and many other pragmas like for or single include implicit barriers in their semantics. We
design an efficient barrier using C++ mutex and condition variables which wakes up all threads
simultaneously when the last thread synchronises. Our barrier only needs to be allocated once, at
the start of the parallel section, and can be reused throughout it safely. We further optimise this by
allocating our barrier as part of the Level class that is always allocated at the same time as the barrier
to reduce the forking latency by removing an allocation.

Critical sections are handled with a unique lock for the parallel section. Locks are normally gen-
erated by the compiler every time they are needed throughout the application, and then locked by the
runtime library in corresponding sections (e.g. critical and reduction code blocks). Clang’s libomp
uses many custom types of locks, including futex, ticket locks, and atomic variables or flags7 for per-
formance purposes. This complexity serves little our future intentions of distributing the library and
as such all the locking purposes are handled with unique mutex allocated as part of the Level class
similarly to what we did with the barrier to limit allocations.

OpenMP API offers more mature memory ordering than WebAssembly. The compiler private li-
brary support a plethora of atomic instructions for a multitude of sizes and signs of integer, floating
points and complex variables; operations that must be used when the compiler does not itself inline
the atomic instructions because it cannot ensure the validity of this operation for the target archi-
tecture. To safely support those operations, we would require the finalisation of the WebAssembly
threading proposal to outline memory ordering semantic of the modules and appropriately match
it to OpenMP’s relaxed-consistency memory model [74]. Instead, we follow the stronger sequential
consistency before the proposal is finalised and implemented in LLVM which would allow us to en-
sure the code generation for the OpenMP and WebAssembly combination respects the semantics of
both memory models for the target architecture.

We can still implement omp flush to synchronise the thread’s local view of the memory using the
memory fence compiler intrinsic __sync_synchronize[88].8 OpenMP flush can be used to implement
spin locks, and depending on the architecture FAASM runs on, it might be necessary to make the
flushing Wasm thread yield the CPU[88]—this is possible because yielding is in the WebAssembly
threading proposal and is implemented by WAVM [64].

6This can be safely templated with C++ std::make_unsigned<T>::type
7The GNU compatibility symbols are notably used for this purposes.
8A WebAssembly compiler might directly generate an atomic.fence instruction instead in the future

Page 37 of 58

H2020 825184 RIA
31/7/2020 CloudButton

6.5.4 WebAssembly thread pool

After running experiments on a variety of existing code, we realised that our library palled in com-
parison to the native libraries on a specific pattern used in certain kinds of scientific applications [93].
Listing 16 shows this pattern which we identified to be an excessive creation of small parallel sections.
In line 3, the parallel section is in an outer for loop causing 100 fork-joins of 10 threads each. This
could be refactored instead into an efficient omp for construct causing a single fork to be generated.
We initially assumed in our design this would not be an issue because OpenMP, and the fork/join
model in general, is notoriously slow at forking and thus assumed such a code would be an anti-
pattern not found in existing applications. However, it is often employed (probably by accident),
when functions containing a parallel sections are called in a loop.

1 int main {
2 for (int i = 0; i < 100; i++) {
3 #pragma omp parallel num_threads(10)
4 do_work();
5 }
6 }

Listing 16: Excessive parallel section creation

Optimising Wasm stack allocation. The majority of the forking time is spent dynamically allocat-
ing stacks from the Wasm memory and setting up the threads arguments. We reduce most of the
thread spawning overheads by using a thread pool instead. Two competing designs were imple-
mented, one using a condition for each worker, and one using a shared synchronised queue. While
both reduced the runtime of those worst case programs by several orders of magnitude, the design
with the work queue was consistently faster.

1 class PlatformThreadPool {
2 public:
3 PlatformThreadPool(size_t numThreads, WAVMWasmModule *module);
4

5 friend int64_t workerEntryFunc(void *_args);
6

7 std::future<int64_t> runThread(openmp::LocalThreadArgs &&threadArgs);
8

9 ~PlatformThreadPool();
10 ...

Listing 17: Thread Pool API

We outline in the Listing 17 the API of the thread pool exposed to the OpenMP library runtime.
The constructor takes in the number of threads in the pool, which can be either fetched from the user
configuration or defaulted to the machine’s number of cores or limited by the runtime to a lower
number. The other argument is the WAVMWasmModule which, as shown in Figure 4, handles the mod-
ule’s memory and thus is used to allocate the thread’s stacks during the module initialisation.9 The
stacks will be reused throughout the duration of the program by reseting the stack pointer to the
beginning for each new job. The friend function workerEntryFunc is the wrapper for the workers to
handle the internal work queue management, set up the TLS multi-tenancy mechanisms explained
previously and pass through the _args to the WAVM [64] threading API that handles thread argu-
ments as a raw void pointers of arguments.

To submit a job, the runtime library efficiently pass-in an r-value reference of the arguments to
set-up the thread (containing function and args from Figure 4). The pool sets up a promise that

9If necessary, lazy initialisation of the workers could also be implemented with little modifications.

Page 38 of 58

H2020 825184 RIA
31/7/2020 CloudButton

(a)
(b)

Figure 7: Existing linear algebra applications running FaasMP (wasm-pool) and libomp (native)

will be resolved by the worker and returns a future handle to the library that can use it to join the
threads. The destructor gracefully waits for the OpenMP work completion before shutting down the
threads.

Hence, this design fixes our two initial problems of requiring a new stack allocation for each new
thread and the inefficient argument handling thanks to the reuse of the thread stacks and the use of
move semantics. It also allows for more efficient use of the Wasm memory since the previous thread
stacks could not be reclaimed because they were not obtained via a normal allocator.

6.6 Experimental evaluation

Native local baseline. We use Clang’s native compiler local library libomp [88] when evaluating
FaasMP against a state-of-the-art OpenMP implementation. We use the same unmodified code for
both set-ups and compile the native programs using the same version of LLVM for all experiments,
except for §6.6.2 where the native program runs libgomp and musl [76, 66], inside a Docker container
running Alpine Linux [94] with full CPU access.

Metrics. We will use execution time, throughput and latency to evaluate the performance of our
system, as well as discussing the broader usability of our work.

Testbed and set-up. All experiments are run on the same cluster made of Intel Xeon E5-2660 2.6 GHz
machines with 32 GB of RAM connected by a 1 Gbps connection. We use Redis [46] for the FAASM

state, deployed in the same cluster on a remote host, unless otherwise specified.

6.6.1 Linear algebra applications

This experiment compares the performance and scalability of FaasMP and libomp on existing matrix
kernel applications. The code is taken from Intel’s parallel kernels [95] and was not modified before
being compiled through our toolchain. The experiments are memory intensive, and their runtime is
almost entirely spent in OpenMP code, including the testing code at the end of each kernel, check-
ing the operations completed successfully and without race conditions. They make large use of the
core OpenMP API: barrier, master, flush, for, parallel [for]. We plot the average runtime over
multiple runs and include the variance on the graphs.

Figure 7a shows how little overhead our library suffers from despite being integrated into a multi-
tenant serverless platform running on WebAssembly. The performance is comparable to libomp and

Page 39 of 58

H2020 825184 RIA
31/7/2020 CloudButton

(a) (b) (c)

Figure 8: omp for with different for loop sizes using dynamic threads (wasm), thread pool (wasm-
pool) and libgomp (native).

the runtimes are within 10% of one another.
Figure 7b shows how the libraries perform when more threads are used and where the efficiency

of the synchronisation is more important. Although two experiments have similar runtimes, we
perform significantly better on the transpose program that makes heavy use of the barrier construct.
Its runtime is therefore significantly affected by the performance of the synchronised variables that
keep track of the threads having reached the barrier, and by the work distribution mechanism, which
in this case is the thread pools of the libraries.

Our implementation is integrated inside a serverless runtime which scales thanks to its integra-
tion with platforms like KNative [33]. For running this code outside of FAASM and without having
to provision machines, a user might decide to build a container and use a system such as AWS Far-
gate [96] that will show similar performance (up to 4 vCPUs), scalability and fairness guarantees as
our approach. However, the user will be shielded from the code distribution to multiple machines
that FaasMP can also provide.

6.6.2 Local performance characteristics

In this experiment, we study in detail the performance characteristics of FaasMP and its local thread
pool when parallelising for loops to compare it against expected OpenMP runtime behaviour. The
experiment consists of three computationally intensive micro-benchmarks designed around the omp
parallel for construct of increasing loop size (tiny, small and big). The work quantity stays con-
stant within each experiment, even as the number of threads increases, which in turn decreases the
compute to thread ratio. The source code is identical for all experiments and the native toolchain
is modified to use the same libc as the WebAssembly one to eliminate the performance difference
between glibc and musl.

Figure 8a considers the operating latency as we increase the number of threads that we have to
fork for an almost no-op job. The thread pool design improves on our simpler initial implementation
of on-demand dispatching. Both systems exhibit higher overheads than the native local runtime,
although they show consistent behaviour with libgomp as the number of threads increases. FaasMP
is designed to distribute larger jobs across hosts where the network latency dominates the cost of
local operations—I/O is on the order of milliseconds compared to microseconds for OpenMP thread
scheduling. As such, throughput is often optimised against latency in our implementation choices
because of the distributed capabilities of our library.

Figure 8b shows a small compute/thread ratio and FaasMP reaches the peak workload with
12 threads compared to 18 threads for libomp. The former successfully shows constant throughput
even as more threads are used to execute the same amount of work.

Figure 8c shows the linear scalability from all systems for a trivially parallelisable task, as we

Page 40 of 58

H2020 825184 RIA
31/7/2020 CloudButton

(a) (b)
(c)

Figure 9: Scalability of different arithmetic reduction methods across hosts

would expect. The overheads for OpenMP are not meant to dominate or increase linearly with the
number of threads and instead can be amortised.

Overall the behaviour of FaasMP matches previously set expectations for OpenMP work-sharing [80]
in term of both linear throughput and peak work. However, as can be seen in this experiment and in
§6.6.1, we suffer from higher variability in the runtimes. Our integration with FAASM increases the
binary size compared to having a standalone library which can be an issue for the CPU instruction
cache, but the noise in the experiments is mainly due to the WebAssembly virtualisation that was
shown to entails more CPU turbulences [97] because of the poorer Wasm code generation compared
to native code. As the popularity of WebAssembly continues to grow and compilers improve support
for it, we expect this issue to be less prominent.

6.6.3 Distribution experiments

In this section, we show how FAASM can seamlessly scale OpenMP applications to several hosts to
improve performance.

Distributed Monte Carlo methods. In this experiment, we measure the scalability of FaasMP on
distributed reduce operation and compare it to existing state-of-the-art serverless platforms. We
implement the same Monte Carlo simulation algorithm as found in Crucial [26], but in C++ with
OpenMP rather than Java. This program is used to calculate digits of π based on the simulation of
uniform random numbers in the unit square to approximate the area of the quadrant of the unit circle.
This approach is similar to other existing stochastic simulation methods that are frequently imple-
mented in OpenMP, and this application extends to further Monte Carlo integration techniques. We
compare the performance of different reduction strategies. The OpenMP program uses the reduction
clause of the parallel section to aggregate the result.

Figure 9a shows the case when Faaslets are allowed to directly push reduction data to the state
which is then responsible for running an associated routine to update the data accordingly—in this
case an atomic INCRBY operation. This mechanism is similar to the method shipping approach used
by Crucial to implement the AtomicLong object. The counter is held in their distributed object store
they used remote methods invocation to update it [26]. In our experiment, we observe that even
when the scheduler starts to offload Faaslets to other available workers, the throughput of the system
keeps increasing linearly, whereas, if it did not, the application plateaus at a constant throughput.

Figure 9b shows the impact of lock contention when using a remote locking mechanism to syn-
chronise the reduction variable. We witness a pronounced drop in the throughput only just one and
two workers; a gap that would worsen as more workers are running the job. We also notice signif-
icantly more jitter when several nodes are competing for the global lock. The FAASM global state
consistency mechanism here only allows two Faaslets at to try and to acquire the remote lock simul-
taneously, but even this small amount of contention is too high for the system’s network latency and
the locking mechanism is severely impaired.

Page 41 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Figure 10: Peak distribution behaviour

Figure 9c shows our reduce implementation, backed by the FaasmVector, can achieve similar
linear scalability as the method shipping experiment without relying on the consistency guarantees
of the FAASM state storage layer. The final pulling of the vector to be accumulated by the main Faaslet
does not impact the scaling of the program.

As discussed previously, it is expected by users that the OpenMP implementation should show
such linear scalability when executing omp parallel for [reduce] constructs for parallelisable ap-
plications. Obtaining linear throughput as the number of threads and workers increases is also be-
coming the standard behaviour for stateful serverless runtimes and storage systems [98]. On this
specific application, Crucial uses Infinispan [99] instead of Redis [46]. This obtains similar results [26]
but requires the use of a custom Java API and code annotations to implement the program.

Distributed peak performance. This experiment looks at the behaviour of the runtime as peak scal-
ability is reached. Reaching peak performance happens in two cases: (1) there are no more machines
available for FAASM to scale to10 or machines are in the process of being provisioned after a sudden
peak, which for VMs in the cloud can take several minutes; or (2) the program compute/thread ratio
does not dominate enough the forking and scheduling overheads.

We modify the Monte Carlo simulation program above for the threads to have a smaller amount
of work to do in the distributed part of the program. The compute to thread ratio thus diminishes as
the number of threads increases.

Figure 10 shows how the throughput plateaus when maximum scalability is reached, similarly
to what happens locally in Figure 8b when the peak parallelisation is reached but on multiple hosts.
This highlights a beneficial property of our forking/scheduling mechanism: even if the number of
threads and hosts increases, the application does not use more hosts than it requires. This is achieved
without any tuning from the user or complicated runtime state analysis [82, 83] and saves on scarce
cloud resources such as RAM and network. The distributed work-sharing implementation of FAASM

can efficiently schedule those extra Faaslets without overloading the hosts and without diminishing
the throughput, thanks notably to the forked Faaslets quick spawning time of ∼ 500µs [25].

We confirm in this experiment the efficient work distribution claims of FAASM that can be effi-
ciently exploited to execute OpenMP threads. Our system makes more efficient use of the cluster
resources than other serverless systems that rely on containers as their distribution mechanism like
PyWren [18, 19, 20] or Crucial [26] thanks to the low resource footprint of Faaslets and the consequent
high-density of threads per hosts. Through FAASM again, we offer a more fine-grained scaling and
efficient use of resources than other stateful serverless platforms like Cloudburst[27] thanks to the
quick creation and destruction of Faaslets.

10Although serverless intends to be virtually infinitely scalable, some deployments might have actual limits

Page 42 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Pragma FaasMP local

atomic 7

barrier 3

critical 3

flush 3

for [simd] [schedule=static] 3

master 3

parallel [reduce] 3

single [nowait] 3

Table 8: Local runtime pragma support

6.6.4 Usability and potential

This section judges the usability of FaasMP for programmers who are either seeking to use the
library or extend it. Table 8 shows the extent of our local support of the core OpenMP API, with only
the atomic construct missing because of the immaturity of WebAssembly. We also implement static
scheduling because it is the default of all known runtimes and is the only scheduler that we have
encountered in existing code, probably because it is the one showing the smallest overheads out of
all the schedulers [80].

We now assess how easy it is for a user to adopt our system. We have already shown that the
performance behaviour of FaasMP corresponds to the user expectations from an OpenMP runtime
library, thus respecting their local optimisations, and we have also shown support for most of the
core OpenMP API. The main remaining obstacle for users can thus be the WebAssembly compilation
that, despite differing from native compilation, can easily be undertaken in the local environment
and quickly tested.

Figure 11 compares the user mental model required from the user to cross-compile their appli-
cations to Wasm compared to their current native tools knowledge. The initial role of headers are
similar and the compiled objects (ELF binary for native or a Wasm module) lead to the same unre-
solved symbols present in the binary and to which can be attached profiling tools. The libraries are
in both cases viewed as a black box, and like for the native case we only require recompilation of the
user program if the compiler’s internal ABI changes.

6.6.5 Other performance considerations

We explore what performance characteristics of FaasMP might ward off users.

Latency. Our system shows a higher latency for forking or joining WebAssembly threads or Faaslets
than local compiler runtimes, so users should seek to avoid excessive creation of parallel sections,
especially in a loop. Although OpenMP’s behaviour varies based on the platform and architecture is
it running on, this is an advice that has always been considered a best-practice [90, 80, 85].

Table 9 shows the latency for a minimal reduce operation, broken down by the cumulative over-
heads. The measured section forks, assigns a local value to the reduction variable and reduces it.
FaasMP is an order of magnitude slower when there is no network communication involved and two
orders of magnitude slower when using state. Upcoming modifications to the FAASM state should
improve those already encouraging results by removing some of the network latency through the use
of distributed shared memory. These results are also an order of magnitude better than the reduce
overheads of Cluster OpenMP [85]. We know those results are not comparable because they were
running a different experiment on older hardware, but this gives an order of magnitude at which

Page 43 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Figure 11: Comparison of the cross-compilation processes for native (left) and FaasMP (right)
toolchains.

their paged-based DSM layer used to operate on.

Physics simulation. A natural question that arises from Table 9 is what happens when an appli-
cation is comprised exclusively of latency-critical patterns such as the ones showed in Listing 16.
LULESH [93] is a complex hydrodynamics modelling application containing 44 OpenMP pragmas
that we were able to compile without modification.11 An initial iterations parameter allows for
running the program during a certain logical epoch of time, with a single iteration creating over
10,000 threads. Since most parallel section are called in loops, the theoretical latency to fork and join
those sections is of squared complexity to the number of threads, and thus the single order of magni-
tude of overhead difference shown in Table 9 should result in a two orders of magnitude difference
of the program runtime. This was verified empirically and is what motivated the creation of the
thread pool, since the dynamic stack allocation overheads was giving results that were five orders of
magnitude worst originally. We believe the pinning of local workers to CPU cores, similarly to what
libomp does [88], would further help with the local performance improvement.

11LULESH uses C++ iostream for logging, which is not supported by the host interface, and so logging was removed.

Page 44 of 58

H2020 825184 RIA
31/7/2020 CloudButton

System Time (ms)

Native 2

Local library (thread pool) 13

Faaslet local snapshot 73

Faaslet remote snapshot 140

Table 9: Comparison of reduce latency (no-op)

Other concerns. Other considerations include being currently limited to 32-bit applications by We-
bAssembly, the lack of a better fault tolerance mechanisms apart from relying on idempotent threads
and not having a mechanism to automatically decide between the local or distributed backend. In
addition, our solution shares the benefits and issues of FAASM in general [25].

Page 45 of 58

H2020 825184 RIA
31/7/2020 CloudButton

7 FaasMPI: Bridging the gap between HPC and the cloud
The two worlds of High-Performance Computing (HPC) and Cloud Computing have traditionally
shown little overlap, each having their own disjoint sets of popular languages and frameworks. HPC
is primarily focused on performance and fine-grained control of underlying resources, while the
Cloud targets ease of use and hides underlying hardware from users.

Accordingly, Fortran and C/C++ are the most popular HPC languages [28], and HPC frame-
works like MPI and OpenMP expose users to hardware-specific features such as SIMD instructions
and GPU offloading [74]. Newer HPC languages such as Chapel [100] and Charm++ [101] intro-
duce high-level programming constructs, with NumPy-like arrays implemented with Chapel in Ark-
ouda [102]. However, these are yet to see wide adoption outside the HPC community. In contrast,
frameworks commonly used in Cloud environments like Spark [103] and Flink [104] offer high-level
APIs [1] in dynamic languages such as Python. Serverless providers most commonly target Python
and Javascript support [35, 105, 106], with little or no support for popular HPC languages and frame-
works.

One of the stated goals of CloudButton is to bridge this gap by transparently executing HPC
applications on serverless infrastructure, thus providing low cost, flexible scaling, without losing the
expressivity and control of traditional HPC frameworks. We do this with FaasMPI, native support
for MPI built into FAASM.

7.1 Motivating serverless MPI

MPI is a widely used standard for writing distributed applications, and while it is still most com-
monly employed in high-performance computing (HPC), it also crosses the divide into non-HPC
frameworks. MPI support is found in machine learning frameworks like Horovod [31] and Mi-
crosoft’s CNTK [107] and Alchemist [108] demonstrates an MPI backend for Spark.

MPI supports point-to-point and collective communication, both synchronously and asynchronously,
and users express applications as a set of distributed workers sharing immutable messages. This
fits well with the serverless paradigm for three reasons: (i) MPI applications are already struc-
tured around large numbers of small distributed tasks; (ii) message-passing can be efficiently imple-
mented using existing serverless storage mechanisms; (iii) tasks address each other through numeric
“ranks", so are independent of the underlying networking and communication layer. Actor-based
programming is similarly well suited to serverless for the same reasons, and has been explored in
PLASMA [9]. However, the breadth and volume of existing MPI codebases dwarfs that of actor-
based applications, so it is a more compelling option given the aims of CloudButton. With serverless
MPI we can support a wide variety of existing use-cases in big data, machine learning, fluid dynam-
ics, genomics, astrophysics and other scientific applications [109].

7.2 FaasMPI and FAASM

MPI 1.0 was released in 1994 and has been developed and augmented ever since. Although more
recent developments have added advanced, useful features, it is the basic point-to-point messaging
and collective communication from earlier MPI releases that underpins the majority of open-source
MPI code today [28]. For this reason, FaasMPI targets only this core functionality, namely: (i) syn-
chronous and asynchronous point-to-point messaging; (ii) broadcast and all-to-all; (iii) scatter, gather
and all-gather; (iv) reduce and all-reduce; (v) remote memory access and one-sided communication.
FAASM also supports custom types and custom reductions. A full list of the MPI functions supported
by FaasMPI is given in Table 10.

MPI applications normally execute in a static environment on a set of hosts provisioned ahead of
time. In contrast, FAASM and other serverless platforms aim to scale up and down to meet a user’s
need. To address this disconnect, FAASM lets users specify the level of parallelism they require for
their MPI application on a per request basis. This means that users can execute the same application
at different scales without without changing any configuration or redeploying the code.

Users can compile MPI applications using the standard FAASM toolchain, which is based on
LLVM tools such as Clang [110]. As with all FAASM functions, the output of this compilation is a

Page 46 of 58

H2020 825184 RIA
31/7/2020 CloudButton

MPI Category Function Action

Environment MPI_Init() Ensure all functions initialised
MPI_Comm_size() Number of functions in communicator.
MPI_World_size() Number of functions in world.
MPI_Finalize() Finish MPI operations.
MPI_Abort() Exit MPI application.

Point-to-point MPI_Send() Send message to function (sync).
MPI_Isend() Send message to function (async).
MPI_Recv() Receive message from function (sync).
MPI_Irecv() Receive message function (async).
MPI_Probe() Get information on incoming message.
MPI_Wait() Wait for async operation.

Collective MPI_Bcast() Broadcast to all other functions.
MPI_Alltoall() Send all-to-all message.
MPI_Barrier() Wait for all functions to reach barrier.
MPI_Scatter() Divide array across all functions.
MPI_Gather() Receive from all functions into array.
MPI_Allgather() All-to-all version of MPI_Gather.
MPI_Reduce() Reduce data from all other functions.
MPI_Allreduce() All-to-all version of MPI_Reduce.

Remote memory MPI_Win_create() Create region of shared state.
MPI_Win_free() Delete region of shared state.
MPI_Get() Pull data from shared state.
MPI_Put() Push data to shared state and notify receiver.
MPI_Win_get_attr() Get attribute of shared state.
MPI_Win_fence() Wait for operations on shared state.

Table 10: MPI functions supported in FaasMPI

WebAssembly file that can be uploaded and invoked on a FaasMPI cluster.
FAASM itself is built on Faaslets, a lightweight isolation mechanism which uses WebAssembly

for memory safety [32]. Faaslets allow functions to interact with the underlying host through a
specialised Host Interface, which supports standard POSIX-like calls for memory management, file
I/O and networking, as well as serverless-specific calls for sharing state and interacting with other
functions. MPI is implemented as an extension of this Host Interface, with calls incurring the same
minimal overheads as the other functions in the interface.

7.3 FaasMPI architecture

MPI applications operate in the context of a world, which encompasses a set of distributed processes
that can send messages to each other. Each process addresses others using a numeric rank, with
ranks ranging from zero to one less than the world size. The underlying MPI runtime assigns ranks to
processes as part of the initialisation process triggered by a call to MPI_Init. Each subsequent MPI
call may specify one or more ranks, which the runtime must resolve to determine which processes
on which hosts a given message must be delivered to.

In FaasMPI, an MPI world is made up of a number of serverless functions, each of which has its
own rank. When the initial call to MPI_Init is made, FaasMPI uses the standard FAASM scheduler to
invoke the required number of functions. Each FAASM host includes an MPI Broker, which performs
rank resolution and uses FAASM’s distributed state to share data across hosts.

The FaasMPI architecture is shown in Figure 12, which outlines a function with Rank 0 on one

Page 47 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Faasm Host A Global registry

RANK -> HOST
0 -> Host A
1 -> Host A
2 -> Host B

MPI
Broker

Func A
RANK=0

Local Registry

RANK -> FUNC
0 -> Func A
1 -> Func B

Func B
RANK=1

Faasm Host B

MPI
Broker

Func C
RANK=2

Local Registry

RANK -> FUNC
2 -> Func C

1

2

3

5

6

8

{
 id: 123
 type: “SEND”,
 from: 0,
 to: 2,
}

Faasm state (key-value)

“msg_data_123” -> <message data bytes>

4 7

1 Func A (Rank 0) calls MPI_Send to Rank 2

2 Broker fails to find Rank 2 in Local Registry

3 Broker finds Rank 2 in Global Registry

4 Broker writes message data to Faasm state

5 Broker sends message to Broker on Host B

6 Broker finds Rank 2 in Local Registry

7 Broker pulls message data from state

8 Func C (Rank 2) calls MPI_Recv from Rank 0

Figure 12: Resolving MPI_Send and MPI_Recv calls in FaasMPI

host (Func A on Faasm Host A), sending a message to a function with Rank 2 on a different host (Func
C on Faasm Host B) using the MPI_Send function. The MPI Broker on Host A first checks if the given
rank is located on the same host by querying the Local Registry. If this is the case, the message and
its associated data can be transferred purely through FAASM’s in-memory shared state. As this is
not the case, the MPI Broker queries the Global Registry to determine which host the given rank is
located on (Host B). Before sending the message, the MPI Broker writes any relevant message data to
FAASM’s global state, making it accessible to all other hosts in the cluster. The MPI Broker then sends
the message directly to its counterpart on the relevant host, which pulls the message data from the
global state. This MPI Broker then queries its own Local Registry to determine the recipient function
for the message (Func C). The recipient function can access incoming messages through calls to the
relevant MPI function, in this case, MPI_Recv.

7.3.1 MPI one-sided memory access

To avoid coordination overhead in point-to-point MPI communication, MPI 2.0 introduced one-sided
communication, or Remote Memory Access (RMA). This allows an MPI process on one host to di-
rectly access data held in the memory of another MPI process, potentially on another host. MPI
is agnostic as to how RMA is implemented, but it may be backed with hardware support such as
RDMA, or rely on distributed memory in a supercomputer [111].

FaasMPI supports RMA using FAASM’s distributed shared, providing zero-copy access when
functions are colocated, and access through FAASM’s global state tier when distributed across hosts.
This provides a simple abstraction and straightforward implementation, extending FaasMPI’s sup-
port to a wider range of existing MPI applications.

Page 48 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Listing 18: Distributed SGD application with Faasm
1 t_a = SparseMatrixReadOnly("training_a")
2 t_b = MatrixReadOnly("training_b")
3 weights = VectorAsync("weights")
4

5 @faasm_func
6 def weight_update(idx_a, idx_b):
7 for col_idx, col_a in t_a.columns[idx_a:idx_b]:
8 col_b = t_b.columns[col_idx]
9 adj = calc_adjustment(col_a, col_b)

10 for val_idx, val in col_a.non_nulls():
11 weights[val_idx] += val * adj
12 if iter_count % threshold == 0:
13 weights.push()
14

15 @faasm_func
16 def sgd_main(n_workers, n_epochs):
17 for e in n_epochs:
18 args = divide_problem(n_workers)
19 c = chain(update, n_workers, args)
20 await_all(c)
21 ...

8 Distributed Data Objects: Object-oriented programming in FAASM

Faaslets expose state through their low-level state API, or through distributed data objects (DDO).
DDOs are language-specific classes that expose a convenient high-level state interface, and are imple-
mented on top of FAASM’s low-level key/value state API. FAASM employs a two-tier state architecture
that combines local sharing with global distribution of state: a local tier provides shared in-memory
access to state on the same host; and a global tier allows FAASM to synchronise state across hosts.

8.1 High-level state abstraction

DDOs hide the two-tier state architecture, providing transparent access to distributed data. Func-
tions, however, can still access the state API directly, either to exercise more fine-grained control over
consistency and synchronisation, or to implement custom data structures. Each DDO represents a
single state value, referenced throughout the system using a string holding its respective state key.

FAASM writes changes from the local to the global tier by performing a push, and read from the
global to the local tier by performing a pull. DDOs may employ push and pull operations to produce
variable consistency, such as delaying updates in an eventually-consistent list or set, and may lazily
pull values only when they are accessed, such as in a distributed dictionary. Certain DDOs are
immutable, and hence avoid repeated synchronisation.

Listing 18 shows both implicit and explicit use of two-tier state through DDOs to implement
stochastic gradient descent (SGD) in Python. We use Python for the following examples, as it makes it
easiest to convey the business logic in the examples succinctly. The weight_update function accesses
two large input matrices through the SparseMatrixReadOnly and MatrixReadOnly DDOs (lines 1
and 2), and a single shared weights vector using VectorAsync (line 3). VectorAsync exposes a push()
function which is used to periodically push updates from the local tier to the global tier (line 13). The
calls to weight_update are chained in a loop in sgd_main (line 19).

Function weight_update accesses a randomly assigned subset of columns from the training ma-
trices using the columns property (lines 7 and 8). The DDO implicitly performs a pull operation to
ensure that data is present, and only replicates the necessary subsets of the state values in the local
tier—the entire matrix is not transferred unnecessarily.

Updates to the shared weights vector in the local tier are made in a loop in the weight_update

Page 49 of 58

H2020 825184 RIA
31/7/2020 CloudButton

Ak
A
: k

B
: B k

C
: C

A B B C1 C2

F1 F2 F3 F4
Memory mapping

Local tier

Global tier

Host 1 Host 2

Figure 13: FAASM two-tier state architecture

function (line 11). It invokes the push method on this vector (line 13) sporadically to update the
global tier. This improves performance and reduces network overhead, but introduces inconsistency
between the tiers. SGD tolerates such inconsistencies and it does not affect the overall result.

8.2 Two-tier state architecture

Faaslets represent state with a key/value abstraction, using unique state keys to reference state values.
The authoritative state value for each key is held in the global tier, which is backed by a distributed
key-value store (KVS) and accessible to all Faaslets in the cluster. Faaslets on a given host share a
local tier, containing replicas of each state value currently mapped to Faaslets on that host. The local
tier is held exclusively in Faaslet shared memory regions, and Faaslets do not have a separate local
storage service, as in SAND [12] or Cloudburst [15].

Figure 13 shows the two-tier state architecture across two hosts. Faaslets on host 1 share state
value A; Faaslets on both hosts share state value B. Accordingly, there is a replica of state value A in
the local tier of host 1, and replicas of state value B in the local tier of both hosts.

The columns method of the SparseMatrixReadOnly and MatrixReadOnly DDOs in Listing 18 uses
state chunks to access a subset of a larger state value. As shown in Figure 13, state value C has state
chunks, which are treated as smaller independent state values. Faaslets create replicas of only the
required chunks in their local tier.
Ensuring local consistency. State value replicas in the local tier are created using Faaslet shared
memory. To ensure consistency between Faaslets accessing a replica, Faaslets acquire a local read lock
when reading, and a local write lock when writing. This locking happens implicitly as part of all state
API functions, but not when functions write directly to the local replica via a pointer. The state API
exposes the lock_state_read and lock_state_write functions that can be used to acquire local locks
explicitly, e.g. to implement a list that performs multiple writes to its state value when atomically
adding an element. A Faaslet creates a new local replica after a call to pull_state or get_state if it
does not already exist, and ensures consistency through a write lock.
Ensuring global consistency. DDOs support varying levels of consistency between the tiers as
shown by VectorAsync in Listing 18. To enforce strong consistency, DDOs must use global read/write
locks, which can be acquired and released for state keys using the functions lock_state_global_read
and lock_state_global_write, respectively. To perform a consistent write to the global tier, an ob-
ject acquires a global write lock, calls pull_state to update the local tier, applies its write to the local
tier, calls push_state to update the global tier, and releases the lock.

8.3 Experimental evaluation

To demonstrate the use of DDOs in an experiment, we implement the same distributed stochastic
gradient descent (SGD) algorithm as in Listing 18 in C/C++ to run text classification on the Reuters
RCV1 dataset [112]. This updates a central weights vector in parallel with batches of functions across
multiple epochs.

8.3.1 Experimental set-up

Serverless baseline. To benchmark FAASM against a state-of-the-art serverless platform, we use
Knative [113], a container-based system built on Kubernetes [114]. All experiments are implemented

Page 50 of 58

H2020 825184 RIA
31/7/2020 CloudButton

0 5 10 15 20 25 30 35
Parallel Functions

0

100

200

300

Ti
m

e
(s

)

Knative
Faasm

(a) Training time

0 5 10 15 20 25 30 35
Parallel Functions

0
50

100
150
200
250

Se
nt

 +
 re

cv
 (G

B)

(b) Network transfers

0 5 10 15 20 25 30 35
Parallel Functions

0
1000
2000
3000
4000
5000

Us
ag

e
(G

B-
se

co
nd

)

(c) Memory usage

Figure 14: Machine learning training with SGD with FAASM and containers (Knative)

using the same code for both FAASM and Knative, with a Knative-specific implementation of the
Faaslet host interface for container-based code. This interface uses the same undelrying state man-
agement code as FAASM, but cannot share the local tier between co-located functions. Knative func-
tion chaining is performed through the standard Knative API. Redis is used for the distributed KVS
and deployed to the same cluster.
FAASM integration. We integrate FAASM with Knative by running FAASM runtime instances as Kna-
tive functions that are replicated using the default autoscaler. The system is otherwise unmodified,
using the default endpoints and scheduler.
Testbed. Both FAASM and Knative applications are executed on the same Kubernetes cluster, running
on 20 hosts, all Intel Xeon E3-1220 3.1 GHz machines with 16 GB of RAM, connected with a 1 Gbps
connection.
Metrics. In addition to the usual evaluation metrics, such as execution time, throughput and latency,
we also consider billable memory, which quantifies memory consumption over time. It is the product
of the peak function memory multiplied by the number and runtime of functions, in units of GB-
seconds. It is used to attribute memory usage in many serverless platforms [59, 105, 115]. Note that
all memory measurements include the containers/Faaslets and their state.

8.3.2 Experimental results

To test the scalability of the prototype we ran both Knative and FAASM with increasing numbers
of parallel functions. Figure 14a shows the training time. FAASM exhibits a small improvement in
runtime of 10% compared to Knative at low parallelism and a 60% improvement with 15 parallel
functions. With more than 20 parallel Knative functions, the underlying hosts experience increased
memory pressure and they exhaust memory with over 30 functions. Training time continues to im-
prove for FAASM up to 38 parallel functions, at which point there is a more than an 80% improvement
over 2 functions.

Figure 14b shows that, with increasing parallelism, the volume of network transfers increases in
both FAASM and Knative. Knative transfers more data to start with and the volume increase more
rapidly, with 145 GB transferred with 2 parallel functions and 280 GB transferred with 30 functions.
FAASM transfers 75 GB with 2 parallel functions and 100 GB with 38 parallel functions.

Figure 14c shows that billable memory in Knative increases with more parallelism: from approx.
1,000 GB-secs for 2 functions to over 5,000 GB-secs for 30 functions. The billable memory for FAASM

increases slowly from 350 GB-secs for 2 functions to 500 GB-secs with 38 functions.
The increased network transfer, memory usage and duration in Knative is caused primarily by

data shipping, e.g. loading data into containers. FAASM benefits from sharing data through its local
tier, hence amortises overheads and reduces latency. Further improvements in duration and network
overhead come from differences in the updates to the shared weights vector: in FAASM, the updates
from multiple functions are batched per host; whereas in Knative, each function must write directly to
external storage. Billable memory in Knative and FAASM increases with more parallelism, however,
the increased memory footprint and duration in Knative make this increase more pronounced.

Page 51 of 58

H2020 825184 RIA
31/7/2020 CloudButton

9 Conclusion
In this deliverable, we have describes a number of new high-level programming models that we
have developed in the project in order to better support the building stateful serverless applications
in CloudButton. Our goal has been to support a range of popular programming languages and
paradigms, and enable a true “lift-and-shift” experience for users when moving their workloads
to a serverless cloud. This work therefore takes us closer to a key goal of CloudButton, which is
to make it easy for users to move from single machine code and traditional big data frameworks,
to the cheap, flexible scalable deployments on serverless clouds. We implement approaches based
on familiar concepts such as multi-threading, multi-programming, MapReduce and object-oriented
programming, as well as transparent execution of existing code using WebAssembly technology built
with OpenMP and MPI.

Page 52 of 58

H2020 825184 RIA
31/7/2020 CloudButton

References
[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and

I. Stoica, “Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing,” in USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2012.

[2] Tensorflow, “TensorFlow Lite.” https://www.tensorflow.org/lite, 2020.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Commu-
nications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[4] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox, “Twister: a run-
time for iterative mapreduce,” in Proceedings of the 19th ACM international symposium on high
performance distributed computing, pp. 810–818, 2010.

[5] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel data processing with mapre-
duce: a survey,” AcM sIGMoD Record, vol. 40, no. 4, pp. 11–20, 2012.

[6] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the Cloud: Distributed
Computing for the 99%,” in ACM Symposium on Cloud Computing (SOCC), 2017.

[7] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica, B. Recht, and J. Ragan-Kelley,
“Numpywren: Serverless Linear Algebra,” arXivpreprint arXiv:1810.09679, 2018.

[8] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “A Case for Serverless Machine
Learning,” Systems for ML, 2018.

[9] B. Sang, P.-L. Roman, P. Eugster, H. Lu, S. Ravi, and G. Petri, “PLASMA: Programmable Elas-
ticity for Stateful Cloud Computing Applications,” in ACM European Conference on Computer
Systems (EuroSys), 2020.

[10] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo, “SEUSS: Skip Redundant
Paths to Make Serverless Fast,” in ACM European Conference on Computer Systems (EuroSys),
2020.

[11] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “SOCK: Rapid Task Provisioning with Serverless-Optimized Containers,” in USENIX
Annual Technical Conference (USENIX ATC), 2018.

[12] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “SAND:
Towards High-Performance Serverless Computing,” in USENIX Annual Technical Conference
(USENIX ATC), 2018.

[13] A. Klimovic, Y. Wang, S. University, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket:
Elastic Ephemeral Storage for Serverless Analytics,” in USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2018.

[14] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-López, “On the FaaS
Track: Building Stateful Distributed Applications with Serverless Architectures,” in ACM/IFIP
Middleware Conference, 2019.

[15] V. Sreekanti, C. W. X. C. Lin, J. M. Faleiro, J. E. Gonzalez, J. M. Hellerstein, and A. Tumanov,
“Cloudburst: Stateful Functions-as-a-Service,” arXiv preprint arXiv:2001.04592, 2020.

[16] T. Zhang, D. Xie, F. Li, and R. Stutsman, “Narrowing the Gap Between Serverless and its State
with Storage Functions,” in ACM Symposium on Cloud Computing (SOCC), 2019.

Page 53 of 58

https://www.tensorflow.org/lite

H2020 825184 RIA
31/7/2020 CloudButton

[17] A. Jangda, D. Pinckney, Y. Brun, and A. Guha, “Formal foundations of serverless computing,”
ACM on Programming Languages (OOPSLA), 2019.

[18] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed computing
for the 99%,” CoRR, vol. abs/1702.04024, 2017.

[19] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. García-López, “Serverless data analytics in the
ibm cloud,” in Proceedings of the 19th International Middleware Conference Industry, Middleware
’18, (New York, NY, USA), p. 1–8, Association for Computing Machinery, 2018.

[20] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica, B. Recht, and J. Ragan-
Kelley, “numpywren: serverless linear algebra,” masters thesis, EECS Department, University
of California, Berkeley, Oct 2018.

[21] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-
man, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17), (Boston, MA), pp. 363–376, USENIX Association, Mar. 2017.

[22] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on serverless
infrastructure,” in 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), (Boston, MA), pp. 193–206, USENIX Association, Feb. 2019.

[23] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 427–444, USENIX Association, Oct.
2018.

[24] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Autoscaling tiered cloud storage in anna,” Proc.
VLDB Endow., vol. 12, p. 624–638, Feb. 2019.

[25] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless com-
puting,” USENIX Association, 2020.

[26] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-López, “On the faas
track: Building stateful distributed applications with serverless architectures,” in Proceedings
of the 20th International Middleware Conference, Middleware ’19, (New York, NY, USA), p. 41–54,
Association for Computing Machinery, 2019.

[27] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. M. Faleiro, J. E. Gonzalez, J. M. Hellerstein,
and A. Tumanov, “Cloudburst: Stateful functions-as-a-service,” 2020.

[28] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and N. Sultana, “A Large-
Scale Study of MPI Usage in Open-Source HPC Applications,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’19, Association
for Computing Machinery, 2019.

[29] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics in the cloud: Spark on hadoop
vs mpi/openmp on beowulf,” Procedia Computer Science, 2015.

[30] H. Yviquel and G. Araujo, “The cloud as an openmp offloading device,” 08 2017.

[31] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in tensorflow,”
arXiv preprint arXiv:1802.05799, 2018.

[32] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. Bastien, “Bringing the Web up to Speed with WebAssembly,” ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2017.

Page 54 of 58

H2020 825184 RIA
31/7/2020 CloudButton

[33] “Knative platform,” 2020.

[34] M. Shahrad, R. Fonseca, Íñigo Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano, C. Tresness,
M. Russinovich, and R. Bianchini, “Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider,” 2020.

[35] A. W. Services, “Lambdas,” 2020.

[36] C. Kenton Varda, “Fine-grained sandboxing with v8 isolates,” 2020.

[37] Fastly, “Edge compute,” 2020.

[38] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov,
and C. Wu, “Serverless computing: One step forward, two steps back,” arXiv preprint
arXiv:1812.03651, 2018.

[39] P. G. López, M. S. Artigas, S. Shillaker, P. R. Pietzuch, D. Breitgand, G. Vernik, P. Sutra, T. Tar-
rant, and A. J. Ferrer, “Servermix: Tradeoffs and challenges of serverless data analytics,” CoRR,
vol. abs/1907.11465, 2019.

[40] J. Spillner, “Serverless computing and cloud function-based applications,” in Proceedings of the
12th IEEE/ACM International Conference on Utility and Cloud Computing Companion, UCC ’19
Companion, (New York, NY, USA), p. 177–178, Association for Computing Machinery, 2019.

[41] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind the Curtains of Server-
less Platforms,” in USENIX Annual Technical Conference (USENIX ATC), 2018.

[42] A. W. Services, “Aws s3,” 2020.

[43] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services,” SIGACT News, vol. 33, p. 51–59, June 2002.

[44] A. Klimovic, H. Litz, and C. Kozyrakis, “Reflex: Remote flash = local flash,” in Proceedings of
the Twenty-Second International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, (New York, NY, USA), p. 345–359, Association for Computing
Machinery, 2017.

[45] T. Zhang, D. Xie, F. Li, and R. Stutsman, “Narrowing the gap between serverless and its state
with storage functions,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19,
(New York, NY, USA), p. 1–12, Association for Computing Machinery, 2019.

[46] R. Labs, “Redis,” 2020.

[47] M. Perron, R. C. Fernandez, D. DeWitt, and S. Madden, “Starling: A scalable query engine on
cloud function services,” 2019.

[48] Microsoft, “Azure serverless sql,” 2020.

[49] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: A serverless framework
for end-to-end ml workflows,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC
’19, (New York, NY, USA), p. 13–24, Association for Computing Machinery, 2019.

[50] A. Bhattacharjee, Y. D. Barve, S. Khare, S. Bao, A. Gokhale, and T. Damiano, “Stratum: A server-
less framework for lifecycle management of machine learning based data analytics tasks,”
ArXiv, vol. abs/1904.01727, 2019.

[51] J. Carreira, “A case for serverless machine learning,” 2018.

Page 55 of 58

H2020 825184 RIA
31/7/2020 CloudButton

[52] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M. I. Jor-
dan, and I. Stoica, “Ray: A distributed framework for emerging AI applications,” CoRR,
vol. abs/1712.05889, 2017.

[53] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: The prospect of serverless
scientific computing and hpc,” in CARLA, 2017.

[54] X. Niu, D. Kumanov, L.-H. Hung, W. Lloyd, and K. Y. Yeung, “Leveraging serverless comput-
ing to improve performance for sequence comparison,” in Proceedings of the 10th ACM Interna-
tional Conference on Bioinformatics, Computational Biology and Health Informatics, BCB ’19, (New
York, NY, USA), p. 683–687, Association for Computing Machinery, 2019.

[55] M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal, T. Yan, L. Brown, Q. Fan,
D. Gutfruend, C. Vondrick, and A. Oliva, “Moments in time dataset: one million videos for
event understanding,” 2018.

[56] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov, and
C. Wu, “Serverless Computing: One Step Forward, Two Steps Back,” Conference on Innovative
Data Systems Research (CIDR), 2019.

[57] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu, and
F. Huici, “My VM is Lighter (and Safer) than your Container,” in ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[58] M. Kerrisk, “Linux manual pages,” 2020.

[59] Amazon Web Services, “AWS Lambda.” https://aws.amazon.com/lambda/, 2020.

[60] Mozilla, “WASI: WebAssembly System Interface.” https://wasi.dev/, 2020.

[61] Fastly, “Edge dictionaries,” 2020.

[62] CloudFlare, “Worker kv,” 2020.

[63] WebAssembly Community Group, “WebAssembly system interface.”

[64] A. Scheidecker, “Wavm,” 2020.

[65] L. Project, “Llvm 10 release notes,” 2020.

[66] R. Felker, “musl libc,” 2020.

[67] G. S. foundation, “The gnu c library (glibc),” 2020.

[68] P. S. Foundation, “Cpython,” 2020.

[69] I. project, “Pyodide,” 2020.

[70] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: Flexible, Scalable
Schedulers for Large Compute Clusters,” in ACM European Conference on Computer Systems
(EuroSys), 2013.

[71] Google, “Protocol buffers,” 2020.

[72] I. Corporation, “Intel(r) math kernel library for deep neural networks (intel(r) mkl-dnn),” 2020.

[73] Intel, “Parallel kernels,” 2020.

[74] O. A. R. Board, “Openmp api specification: Version 5.0,” 2018.

Page 56 of 58

https://aws.amazon.com/lambda/
https://wasi.dev/

H2020 825184 RIA
31/7/2020 CloudButton

[75] L. Project, “Llvm openmp runtime library. technical report,” 2015.

[76] T. G. OpenMP and O. Implementation, “Gnu offloading and multi processing runtime lib,”
2020.

[77] T. P. Group, “Pgi compiler openmp documentation,” 2020.

[78] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics in the cloud: Spark on hadoop
vs mpi/openmp on beowulf,” Procedia Computer Science, vol. 53, pp. 121 – 130, 2015. INNS
Conference on Big Data 2015 Program San Francisco, CA, USA 8-10 August 2015.

[79] A. Basumallik, S.-J. Min, and R. Eigenmann, “Programming distributed memory sytems using
openmp,” pp. 1–8, 01 2007.

[80] M. Bull, “Measuring synchronisation and scheduling overheads in openmp,” 02 2002.

[81] M. Ghane, A. M. Malik, B. Chapman, and A. Qawasmeh, “False sharing detection in openmp
applications using ompt api,” in International Workshop on OpenMP, pp. 102–114, Springer, 2015.

[82] O. Kwon, F. Jubair, and R. Eigenmann, “A hybrid approach of openmp for clusters,” vol. 47,
pp. 75–84, 09 2012.

[83] O. Kwon, F. Jubair, S.-J. Min, H. Bae, and R. Eigenmann, “Automatic scaling of openmp beyond
shared memory,” vol. 7146, 09 2011.

[84] J. P. Hoeflinger, “Extending openmp to clusters,” White Paper, Intel Corporation, 2006.

[85] C. Terboven, D. a. Mey, D. Schmidl, and M. Wagner, “First experiences with intel cluster
openmp,” in OpenMP in a New Era of Parallelism (R. Eigenmann and B. R. de Supinski, eds.),
(Berlin, Heidelberg), pp. 48–59, Springer Berlin Heidelberg, 2008.

[86] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Presented as part of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), (San Jose, CA), pp. 15–28, USENIX, 2012.

[87] M. Mortatti, H. Yviquel, and G. Araujo, “Automatic ray-tracer cloud offloading in openmp,”
2018 30th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pp. 428–435, 2018.

[88] L. Project, “LLVM openmp runtime library mirror repository.”

[89] P. Kranenburg, “strace release notes,” 2020.

[90] R. Lyerly, S.-H. Kim, and B. Ravindran, “libmpnode: An openmp runtime for parallel process-
ing across incoherent domains,” pp. 81–90, 02 2019.

[91] S. Shillaker, “Faasm github repository,” 2020.

[92] B. Smith, “Wabt: The webassembly binary toolkit,” 2020.

[93] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,” Tech. Rep. LLNL-TR-
641973, August 2013.

[94] A. L. Downloads, “Alpine linux,” 2020.

[95] Intel, “Parallel kernels,” 2020.

[96] A. W. Services, “Aws fargate,” 2020.

Page 57 of 58

H2020 825184 RIA
31/7/2020 CloudButton

[97] A. Jangda, B. Powers, A. Guha, and E. Berger, “Mind the gap: Analyzing the performance of
webassembly vs. native code,” CoRR, vol. abs/1901.09056, 2019.

[98] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein, “Anna: A kvs for any scale,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pp. 401–412, 2018.

[99] F. Marchioni and M. Surtani, Infinispan Data Grid Platform. Packt Publishing Ltd., 2012.

[100] M. Weiland, “Chapel, fortress and x10: novel languages for hpc,” EPCC, The University of Edin-
burgh, Tech. Rep. HPCxTR0706, 2007.

[101] L. V. Kale and S. Krishnan, “Charm++ a portable concurrent object oriented system based on
c++,” in Proceedings of the eighth annual conference on Object-oriented programming systems, lan-
guages, and applications, pp. 91–108, 1993.

[102] M. Merrill, W. Reus, and T. Neumann, “Arkouda: interactive data exploration backed by
chapel,” in Proceedings of the ACM SIGPLAN 6th on Chapel Implementers and Users Workshop,
pp. 28–28, 2019.

[103] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al., “Spark: Cluster comput-
ing with working sets.,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[104] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache flink:
Stream and batch processing in a single engine,” Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 36, no. 4, 2015.

[105] Google, “Google Cloud Functions.” https://cloud.google.com/functions/, 2020.

[106] S. Malik, “Azure Functions.” https://azure.microsoft.com/en-us/services/functions/,
2020.

[107] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning toolkit,” in Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 2135–2135, 2016.

[108] A. Gittens, K. Rothauge, S. Wang, M. W. Mahoney, J. Kottalam, L. Gerhardt, M. Ringenburg,
and K. Maschhoff, “Alchemist: An apache spark mpi interface,” Concurrency and Computation:
Practice and Experience, vol. 31, no. 16, p. e5026, 2019.

[109] I. Karlin, Y. Park, B. R. de Supinski, P. Wang, B. Still, D. Beckingsale, R. Blake, T. Chen, G. Cong,
C. Costa, et al., “Preparation and optimization of a diverse workload for a large-scale hetero-
geneous system,” in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–17, 2019.

[110] LLVM Project, “LLVM 9 Release Notes.” https://releases.llvm.org/9.0.0/docs/
ReleaseNotes.html, 2020.

[111] W. D. Gropp and R. Thakur, “Revealing the performance of mpi rma implementations,” in
European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 272–280,
Springer, 2007.

[112] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A New Benchmark Collection for Text
Categorization Research,” Journal of Machine Learning Research, 2004.

[113] Google, “KNative Github.” https://github.com/knative, 2020.

[114] The Linux Foundation, “Kubernetes.” https://kubernetes.io/, 2020.

[115] IBM, “IBM Cloud Functions.” https://www.ibm.com/cloud/functions, 2020.

Page 58 of 58

https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
https://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
https://github.com/knative
https://kubernetes.io/
https://www.ibm.com/cloud/functions

	Introduction
	Programming in CloudButton
	Serverless programming in context
	Overview of developed programming abstractions in CloudButton

	Background
	Challenges in current serverless platforms
	Serverless storage layers
	Serverless data analytics

	CloudButton Toolkit: Python APIs
	Map-Reduce API
	Python multiprocessing API
	An example: Deep learning video inference

	Crucial: Serverless multi-threaded applications
	Crucial programming model
	Execution abstractions
	State abstractions

	Sample applications

	Faasm: High-Performance Thread-Based Serverless
	Faasm and Serverless Big Data
	Faaslets
	Host interface
	Building Faasm functions
	State
	Scheduling

	FaasMP: Transparent use of OpenMP APIs with Faasm
	Background: Open Multi-Processing (OpenMP)
	OpenMP API
	Compiler code transformation
	Runtime library

	Related work on distributed OpenMP
	OpenMP to MPI translation
	OpenMP on software distributed shared memory (DSM)
	Offloading to the cloud

	FaasMP Design
	Platform requirements for shared memory multi-processing
	Challenges when distributing OpenMP
	Strawman design: compiling libomp.so to WebAssembly
	Design

	FaasMP architecture
	WebAssembly OpenMP runtime
	OpenMP toolchain

	Local library runtime implementation
	Forking with Wasm threads
	Loop support
	Threading and synchronisation support
	WebAssembly thread pool

	Experimental evaluation
	Linear algebra applications
	Local performance characteristics
	Distribution experiments
	Usability and potential
	Other performance considerations

	FaasMPI: Bridging the gap between HPC and the cloud
	Motivating serverless MPI
	FaasMPI and Faasm
	FaasMPI architecture
	MPI one-sided memory access

	Distributed Data Objects: Object-oriented programming in Faasm
	High-level state abstraction
	Two-tier state architecture
	Experimental evaluation
	Experimental set-up
	Experimental results

	Conclusion

