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Executive summary

Building distributed stateful applications is hard. Users must manage coordination between workers
and efficient distribution of data, while scaling underlying system resources. Serverless computing
provides an easy way to provision and scale resources, but writing applications for this environment
remains challenging. This is down to the lack of high-level programming models. Existing work on such
programming models in big data and machine learning systems is extensive, ranging from RDDs in
Spark [1], to tensors in TensorFlow [2] and a plethora of variations on MapReduce [3, 4, 5]. Similar
work in serverless is scant, with only a small number of use-case specific approaches that are tightly
coupled to the underlying systems [6, 7, 8, 9].

To address this, we present several high-level serverless programming models in the context of
CloudButton. Not only do we provide powerful, easy-to-use abstractions, but do so without in-
troducing new concepts. Instead we adapt familiar principles such as multi-threading and multi-
processing, the ubiquitous MapReduce paradigm, and the two most popular HPC frameworks, OpenMP
and MPI. This ensures that CloudButton achieves its transparency requirements, as described in D2.3.

In this deliverable, we describe the following work: (i) MapReduce and multiprocessing in Python
with Lithops; (ii) serverless multi-threading and shared state in Java with CRUCIAL; (iii) transparent
execution of native C/C++, MPI and OpenMP applications cross-compiled to WebAssembly using
FAASM.

Changes with respect to previous version of deliverable (D5.2)

This deliverable is an iteration on D5.2, and we summarise the changes with respect to that previous
version. In the introduction, we update the descriptions and the status of the three main program-
ming abstractions presented: the Lithops, CRUCIAL, and FAASM. We update the background section
to summarise the current status, and shortcomings, of serverless and the state-of-the-art. For each of
the three main frameworks covered, the following are the most changes:

1. we expand the description of Lithops, positioning it with respect to the rest of the CloudButton
toolkit;

2. we expand the evaluation of the multiprocessing API with two use-cases from industry;

3. for CRUCIAL, we update the programming model with the latest extensions and include a de-
tailed methodology for porting existing multi-threaded Java applications to serverless;

4. for FAASM, we introduce the design, implementation, and evaluation of FaasMPI;

5. we re-visit FaasMP by adding new experimental results that explore the performance and scal-
ability in data- and compute-intensive settings;

6. we merge the section on distributed data objects from D5.2 into the FAASM section on D5.3; and

7. we update the conclusions to include the latest contributions, findings, and results.

Page 1 of 62
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Figure 1: CloudButton toolkit architecture

1 Introduction

Previous research work on serverless computing has placed an emphasis on the underlying runtime
environment, focusing on scalability and performance, but little attention has been paid to writing
serverless applications. Writing applications remains a challenge, as users must learn new frame-
works and concepts, or rewrite existing applications to fit underlying platforms with unfamiliar con-
cepts. While some systems have created use-case specific programming models, none offer a generic
approach, or support transparently porting legacy applications. Novel programming models are
therefore necessary to achieve the access and full transparency, as described in D2.3.

For the particular case of big data applications, previous work [10] argues that a fully serverless
approach may not be desirable. The authors advocate instead for a mix of serverless functions and
traditional serverful applications, they call this the ServerMix model. As a consequence, novel server-
less programming models need to also take into account that parts of the application pipeline might
run in a serverful manner, making the design of these programming models even more challenging.

CloudButton address this issue by creating a programming environment that makes it easy for
users to develop and scale serverless big data applications. In this deliverable, we report on our
findings regarding a range of innovative programming models for serverless applications developed
as part of CloudButton.

1.1 Programming models in CloudButton

CloudButton make serverless efficient for big data and easy to use, and hence must provide appro-
priate programming models. Figure 1 shows the CloudButton toolkit architecture, and highlights
the breadth of language support and usage patterns that the project targets through its use cases.
CloudButton consists of three serverless frameworks, all of which run on shared disaggregated re-
sources. While these frameworks cater to different languages and use cases, they are united by a
common principle: they build on familiar concepts and abstractions, and thus target full trans-
parency where possible.

Page 2 of 62
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This deliverable describes how we achieve this aim in each of the three frameworks in CloudBut-
ton, namely Lithops, CRUCIAL and FAASM. Lithops uses the ubiquitous MapReduce paradigm [3] to
provide a simple yet powerful programming model that many big data applications already adopt;
it also includes a serverless integration with the standard Python multiprocessing library to transpar-
ently port existing applications; CRUCIAL provides a familiar multi-threaded programming model by
mapping OS threads to underlying serverless functions using standard Java constructs; FAASM sup-
ports the two most popular C/C++ HPC frameworks, OpenMP and MPI, by mapping its lightweight
thread-based isolation onto serverless functions; it also provides high-level object-oriented abstrac-
tions in several languages, giving access to simple distributed data structures.

1.2 Serverless programming in context

Existing work on serverless computing has focused on runtime design [11, 12, 13], storage perfor-
mance [14, 15], state management [16, 17] and application-specific platforms [6, 8]. A comparatively
small amount of attention has been paid to creating generic serverless programming models, and al-
most none has been paid to porting legacy applications. Jangda et al. [18] propose a formal semantics
for serverless computing but do not provide a high-level programming model; PLASMA [9] intro-
duces an elastic programming model for serverless, but focuses on actor-based code; Numpywren [7]
includes a Python-based programming model, but is limited to linear algebra operations.

The official release of AWS Lambda in early 2015 introduced the idea of using stateless functions
as the sole fundamental compute primitive. PyWren [19] demonstrated that the serverless model
was general enough to provide the building blocks for elastic and scalable big data systems but that
the current platforms suffered from critical performance barriers that needed to be lifted. Related
work tuned the fundamental ideas of PyWren to their own applications [20, 21, 22, 23] or tried to
provide a new storage layer [24, 25] to circumvent the limitations of the platforms. This lead to the
development of stateful efficient serverless solutions [26, 27, 28], which present efficient yet scalable
data processing applications.

1.3 Overview of programming abstractions in CloudButton

We describe the three main programming abstractions and implementations for serverless computing
that we have developed as part of the CloudButton project in response to our use case requirements:

(1) Lithops. One core principle behind CloudButton is programming simplicity. Our focus is to
make serverless computing as usable as possible, irrespective of whether programmers are cloud
experts or not. We have devoted efforts to integrate Lithops with other tools (namely, Python note-
books such as Jupyter), which are popular environments from the scientific community. To break
vendor lock-in and reach out to a wider community, Lithops is also multi-cloud. That is, Lithops ap-
plications can transparently be deployed on the most popular cloud platforms, such as IBM Cloud,
Google Cloud, Amazon Web Services, Alibaba Cloud, etc., without changing a single line of code.
This is thanks to its modular design, which makes it straightforward to integrate the two main types
of cloud services leveraged by Lithops:

1. Compute backends to launch computing jobs, and

2. Storage backends to store all data, including intermediate results.

A compute backend is typically a FaaS platform (e.g., AWS Lambda) while a storage backend is
a BaaS1 storage service (e.g., Amazon S3), so that its two main pillars can scale independently from
each other.

To simplify the serverless transition of existing multithreaded codebases, we present two different
Python APIs:

• one based on Map-Reduce calls and
1BaaS (Backend-as-a-Service) is a term that has evolved in the last few years to describe any application-specific serverless

cloud service, such as serverless databases.
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• another based on standard Python APIs such as concurrent.futures and multiprocessing.

The multiprocessing API includes the implementation of the well-known Process and Pool
computing abstractions, as well as the common Interprocess Communication (IPC) facilities such
as the Queue, Pipe, Lock, Semaphore, Event, and Barrier, among others. By default, Lithops im-
plements the IPC components with Redis, a popular in-memory store that offers microsecond-order
latency. Although Lithops can provide a solution with only serverless components, we opted for
Redis because shared serverless storage (e.g., AWS S3) is two orders of magnitude slower [15].

(2) CRUCIAL. CRUCIAL [15] enables the development of stateful distributed applications in the
cloud by simply extending Java’s concurrency model. It provides computation abstractions that rely
on AWS Lambda to run Java’s Runnable and Callable interfaces based on a basic component: the
cloud thread. To manage state and task coordination at fine granularity, the system builds a distributed
shared object (DSO) layer, with strong consistency guarantees. The application runs on the client’s
machine but uses disaggregated resources in the cloud to distribute computation and shared state.

The aim is to keep the simplicity of serverless in the programming model. Hence writing code
in CRUCIAL is similar to ordinary concurrent Java and distribution is handled transparently. It only
requires the user to use simple annotations and constructs to (i) instantiate cloud threads, (ii) anno-
tate shared data, and (iii) use custom synchronisation objects. This simple model also facilitates the
porting of existing multi-threaded applications.

The basic cloud thread abstraction lets users run simple Runnable tasks seamlessly in the cloud.
Internally, CRUCIAL performs the appropriate transformations and connections to run the code in
the disaggregated FaaS platform. In addition, the system provides a custom implementation of the
ExecutorService interface, the ServerlessExecutorService, to enable powerful parallel computa-
tions directly from traditional Java concurrency code.

Since cloud functions cannot communicate directly, they must communicate through remote
shared objects. CRUCIAL builds a distributed shared object (DSO) store to make OOP objects avail-
able across hosts. The DSO store uses consistent hashing to efficiently address the shared data and
allows to access and update the objects at the level of object methods. This facilitates the develop-
ment of applications requiring fine-grained state sharing and also enables to implement fine-grained
coordination. Data durability is ensured with state machine replication to keep strong consistency.

(3) FAASM. FAASM is a high-performance stateful serverless runtime, which supports C/C++ and
the two most popular HPC programming frameworks, OpenMP and MPI. OpenMP and MPI un-
derpin a huge array of existing scientific, big data and machine learning codebases [29, 30, 31, 32].
Through FaasMP and FaasMPI, FAASM supports transparent execution of unmodified OpenMP and
MPI code, making it straightforward to port this huge array of existing applications to CloudButton.

FAASM is designed around a new lightweight isolation abstraction called a Faaslet [26], which
provides security and resource isolation using WebAssembly [33] coupled with existing OS tools
such as cgroups and network namespaces. Faasm provides access to distributed state through a two-
tier state architecture, which gives co-located functions zero-copy, concurrent access to in-memory
state, and synchronises this state across hosts.

For OpenMP programs, FAASM gives Faaslets access to a shared global address space, which the
runtime transparently synchronises between hosts using FDiffs. Each FDiff specifies a modification
to the linear shared address space, defined by an offset and an array of modified bytes. Faaslets
synchronise writes to the address space by building lists of FDiffs. Each Faaslet maintains a record
of writes to shared memory pages, performs byte-wise comparisons of these pages with its parent
snapshot, and propagates changes back to a main Faaslet via FDiffs. To support multiple updates
to shared variables across hosts, each FDiff specifies a merge operation, which can be an arithmetic
operation, e.g. summation on a shared variables.

For MPI programs, FAASM provides transparent point-to-point asynchronous message passing
for Faaslets. Faaslets are grouped into FGroups, and are assigned a long-lived virtual address. To
reduce network overheads, Faaslets can be migrated mid-execution to improve locality, and FaasMPI
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provides locality-aware collective communication algorithms which it uses to implement most of
MPI’s API.

FAASM is designed to be a pluggable runtime that integrates with existing serverless platforms.
In CloudButton, we use FAASM’s Knative [34] integration to execute on the shared disaggregated
resource layer shown in Figure 1.

Page 5 of 62
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2 Background

FaaS or serverless provides a highly elastic and scalable compute layer for cloud-based applications.
Developers write functions in the language of their choice, the provider then provisions and bills
the resources on demand, lifting the operational burden from the programmer (“serverless”). It
is an advantageous model for cloud providers because they can maximise the utilisation of their
resources by co-locating more tenants per machine [35]; the users—provided the development cost is
not too high—benefit from fine-grain billing and the absence of operational management costs. Fig. 2
positions serverless with respect to other cloud resources in terms of shared and isolated resources.

Hardware
Hypervisor

Virt. HW
Kernel

Userspace
App

Hardware Hardware

Userspace
Runtime

Userspace
Runtime

App App

Virt. HW
Kernel

Userspace
App

Kernel Kernel

Userspace 
App

Userspace 
App

Hardware
Kernel

App App
Userspace

Bare metal Virtual machine Container Serverless

Figure 2: Different levels of isolation for different technologies in cloud computing. (Blue is shared,
green is isolated.)

2.1 Serverless today

The term “serverless” was coined by AWS with the release of AWS Lambda [36]. In AWS Lambda,
users break applications down into one or more stateless functions, each of which is executed on
demand, based on a set of triggers. The triggers for a given function can come from over 200 different
AWS services [36], including requests to HTTP endpoints, uploads to shared storage, or messages
being enqueued. The platform guarantees to execute one instance of each function in response to its
associated triggers, and will attempt to run functions concurrently in response to concurrent triggers.
However, there are no guarantees on the level of parallelism provided, nor the delay in executing
your function in response to a given trigger [37].

AWS Lambda defined the canonical container-based architecture and programming model that
have come to dominate serverless computing today. Lambda continues to be one of the most pop-
ular serverless platforms [37], and has driven the development of the Firecracker MicroVM [38].
In the year after Lambda’s release, all major cloud providers began offering serverless comput-
ing [39, 40, 41], and academic papers on the topic were first published, including OpenLambda [42]
and PyWren [6].

The serverless systems from each major cloud provider continue to offer similar services and in-
terfaces as when Lambda was first released, but have also added serverless orchestration frameworks
like AWS Lambda Step Functions [43], and Azure Durable Functions [44]. Other work has added a
more diverse range of serverless platforms, introducing statefulness [16], application-specific im-
plementations [7], language-specific implementations [45], serverless-specific storage [17], thread-
ing [15], and fault-tolerance [46].

Before we propose new programming models for serverless, this section explores the issues with
current commercial platforms (§2.2) and their storage layers (§2.3), which limit the ease with which
applications can be built on top of them (§2.4).

2.2 Challenges in current serverless platforms

Commercial serverless platforms at the moment can scale shared-nothing task-parallel computation,
provided that it is mostly compute-bound [47]. This still fits a variety of self-contained parallel al-
gorithms applied on incoming streams of data, e.g., for event-driven applications in the cloud, data
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transformation, Internet-of-Things (IoT) and edge computing. The mainstream technology to run
such lightweight tasks are containers because of their ease of provisioning, and the large set of sup-
ported applications. Any programming model for serverless must be compatible with existing limi-
tations of serverless platforms:

(1) Data shipping architecture. Existing platforms such as Google Cloud Functions [39], IBM Cloud
Functions [41], Azure Functions [40] and AWS Lambda [36] isolate functions such that they cannot
share data directly, only via external storage such as object stores like S3 [48].

Having every function share data via external storage introduces data access and serialisation
overheads, forcing each function to duplicate shared data, perform repeated serialisation and dese-
rialisation, create and maintain a connection to the same data store, and perform regular network
transfers. This model has been labelled the serverless “data-shipping architecture” [49], i.e., moving
data to the computation and not vice versa. These overheads are compounded as the number of
functions increases, reducing the benefit of unlimited parallelism, which is what makes serverless
computing attractive in the first place.

A more efficient way to share data between functions is directly via shared memory, however,
sharing memory is fundamentally at odds with the goal of isolation. This makes providing shared
access to in-memory state in a multi-tenant serverless environment a challenge. Cloud providers
have more recently introduced function orchestration platforms that allow a form of state sharing
via persistent artifacts and filesystems between functions [50, 51, 52]. However, these platforms still
do not support shared memory between functions.

In §2.3, we provide a detailed analysis of different storage layers for serverless, both in the indus-
try and academia.

(2) Cold start latency. One of the most widely studied problems in serverless today is the “cold
start” problem. A cold start occurs when the isolation environment needed to execute a function
is created in response to an incoming request. The request experiences a delay as it blocks waiting
for the isolation mechanism to boot, and can cause tail latencies in the order of seconds, but most
commonly hundreds of milliseconds [37]. An added latency of the order of hundreds of milliseconds
can be an order of magnitude higher than the duration of many requests in serverless systems [53].

Container initialisation times have been reduced to mitigate the cold-start problem, which can
contribute several seconds of latency with standard containers [54, 49, 37]. SOCK [12] improves the
container boot process to achieve cold starts in the low hundreds of milliseconds; Catalyzer [55] and
SEUSS [11] demonstrate snapshot and restore in VMs and unikernels to achieve millisecond server-
less cold starts. Although such reductions are promising, the resource overhead and restrictions on
sharing memory in the underlying mechanisms still remain.

The message to be taken from the work on the cold start problem is that minimising start-up
latency and resource overheads in serverless isolation is critical for performance and usability. Exist-
ing work shows that VMs and containers are fundamentally ill-suited to the task, and CloudButton
introduces alternative lightweight isolation mechanisms.

(3) Limited resources (memory, disk, CPU). Typical consumer cloud platforms offer only resource-
limited containers compared to IaaS servers, which often represent lower compute costs for users,
even though they actually come with additional operational costs.

(4) Limited programming model. Today’s serverless applications achieve parallelism by execut-
ing short-lived stateless functions [36, 40, 56]. Stateless functions are useful to providers, as they
have no communication or data dependencies, making it straightforward to control the application’s
parallelism and distribution. This level of control is critical to providers achieving sufficiently high
utilisation on shared infrastructure.

Stateless ephemeral functions are effective at executing certain workloads, such as video process-
ing and MapReduce [57, 6], but existing work has also highlighted their shortcomings [58, 59], such
as the data shipping architecture and lack of inter-function communication. The majority of existing
parallel applications cannot be expressed or executed using stateless ephemeral functions, because:
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(i) they achieve parallelism using OS threads and processes, whose semantics are not supported by
stateless ephemeral functions; (ii) they use shared memory to share data between threads, but shared
memory is not available due to isolated function memory; and (iii) they use message passing to
share data, which is not possible as stateless ephemeral functions can neither discover, nor directly
communicate with each other.

2.3 Serverless storage layers

FaaS focuses on stateless compute, and as such the question of adequate storage layer has been
treated independently. The current FaaS paradigm is not compatible with common cloud-native
storage systems. For example, a serverless map/reduce job to sort 100 TB of data can end up costing
$23k and take 8 days to complete2 just the shuffle phase; compared to 50 minutes & $144 for Spark
to complete entirely [23]. Indeed, the shuffle phase of the cloud sort requires storing 100 TB of data
in an automatically scalable cloud storage service. On AWS Lambda, the only storage option scal-
able enough for such a data amount is AWS S3, with a guaranteed throughput of at least 3, 500 PUT
IOPS [60, 61]. This is largely insufficient to complete the task in a timeline fashion3. In this case, Lo-
cus [23] suggests the issue can be remediated with a fine-tuned combination of fast and slow storage
to efficiently handle the shuffle and reduce parts using an extra merge step after the reduce.

Therefore, current serverless platforms lead to a novel combination of requirements for the stor-
age layer:

1. Scalability: automatic, fine-grain, and pay-per-use.

2. Performance: high throughput and low latency.

3. Storage: any object size, low cost, and ephemeral.

The CAP theorem [62] shows the difficulty of creating a reliable scalable distributed storage sys-
tem with such performance guarantees, especially with fine-grained scalability. The majority of ex-
isting storage services transfer incoming data onto a medium of choice because they are designed
for long-term storage. Deletions are not free operations on those platforms, thus the ephemeral stor-
age characteristics does not drive the costs down in the same way that it can for the compute layer,
which can efficiently drop or share excess resources. The savings can therefore only come from an
aggressive garbage removal policy, either done by the application or the storage layer, which allows
the storage layer to reclaim some of its most desired resources such as memory.

Multi-tier storage Many serverless-specific storage services leverage a combination of existing stor-
age technologies under a single API. They aim to provide both a low latency store and a high band-
width blob store [19]. Examples of such solutions include:

• Pocket [24] is an autoscaling storage system that utilises multiple storage technologies with an
API that allows serverless applications to rightsize their resource use through hints. It is eco-
nomical by leveraging advanced flash storage techniques for speeding up remote memory ac-
cesses [63] and is capable of DRAM-like throughput but using NVM-e drives for storage which
drives down costs by 60%. Relying on pre-fetching and hints however can be problematic
without a suitable programming model.

• Cloudburst [28] is a serverless platform built on Anna, a distributed KVS, leveraging multiple
storage technologies. It monitors frequently used data and uses a consistent caching strategy to
replicate it and bring it closer to the computer layer. Inversely, cold data is demoted to slower
but cheaper storage in an independently-scalable media fashion.

2Assuming 2 GB of memory per lambda (1 GB left for the map/reduce language runtime) & $0.0095 per 1000 PUT+GET
on AWS S3 London: 100 TB/2 GB = 50k partitions⇒ 50, 0002 files ×$0.0000095 = $23, 750.

3500002 files/3, 500 PUT per sec ≈ 8 days

Page 8 of 62



H2020 825184 RIA
31/5/2022 CloudButton

• Shredder [64] is a multi-tenant, yet dependent on tenant cooperation, in-memory store. It uses
a kernel bypass mechanism to speed up remote network accesses to avoid requiring specific
RDMA-like technologies. It preserves the serverless benefits of logically decoupling compute
and storage, however, it co-locates the two when possible. Shredder does not offer as much
storage elasticity as Anna and cannot provide fairness guarantees between functions.

To decide on what storage technology to use, cost models allow serverless map/reduce jobs to
find an optimal cost/performance balance to allocate expensive but fast storage (e.g. Redis [65]) and
rate-limited but cheap storage (e.g. S3 [61]) [23] for their map-reduce operations.

Some SQL-compatible storage platforms refer to themselves as serverless, either because they
are themselves running on serverless platforms [66], or because they offer scaling to zero and fine-
grained billing associated with the underlying DBMS [67]. These are, however, not suitable for use as
the high-performance ephemeral storage serverless applications because they are alternative query
engines to an underlying storage service.

Infinispan provides a multi-purpose distributed in-memory store that can be used to implement
distributed state for serverless functions, as demonstrated in CRUCIAL.

2.4 Serverless data analytics

The issues of current serverless platforms were identified by frameworks that seek to utilise the
serverless promise of a virtually infinitely scalable compute layer. Big data applications such as Py-
Wren use stateless functions to compute distributed operations, including map/reduce [19, 20]. After
initially struggling with network efficiency, more recent work such as numpywren [21], which focuses
on linear algebra, manages to partially overcome these issues by pipelining data. This allows numpy-
wren to simultaneously pre-fetch and save data while executing computation. The orchestration of
the functions is, however, challenging because a pipelining mechanism requires to reuse functions
but their lifetime is usually limited by the platform. Therefore such solutions are not applicable to
many applications.

It is common for serverless applications to require additional stateful components to handle some
specialised coordination mechanisms [68, 23, 22]. This approach may be manageable on a small
scale but is ultimately an issue that limits scalability and usability of systems, and often represents a
critical point of failure. Some approaches focus on the custom provisioning of resources for specific
applications such as statistical machine learning [69], while others provide more general frameworks
to coordinate serverless machine learning (ML) [68, 70]. Often not backward compatible, they may
require to rewrite all the existing ML stack to make use of their features, and they do not provide
a storage layer as elastic as the compute layer. More recent approaches focus on the more fine-
grained requirements of reinforcement learning (RL) [71]. They can even scale RL algorithms in a
fault-tolerant manner thanks to the use of a global state disassociated from stateless functions.

Finally, the HPC community has also implemented applications to run on serverless platforms [72,
73]. These approaches are on the fringes of typical HPC applications by not using the tools commonly
used by the community (e.g. RDMA, OpenMP, and MPI) and are limited to trivially scalable tasks.
Supporting them is one of the main drivers in the CloudButton project.
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Listing 2: Lithops example using the Map-Reduce API
from Cloudbutton.engine import function_executor

def my_map_function(x, y):
return x + y

if __name__ == "__main__":
args = [ # Init list of parameters

(1, 2), # Args for function1
(3, 4), # Args for function2
(5, 6), # Args for function3
] # End list of parameters

exc = function_executor()
exc.map(my_map_function, args)
print(exc.get_result())

3 Lithops: Python APIs

Lithops exposes different APIs that can be used based on user requirements. In D5.2, we presented
a first API definition based on map-reduce. Now, the flexibility of Lithops is substantially increased
by mimicking the Python’s multiprocessing API and components.

3.1 Map-Reduce API

The Map-Reduce API is the basic API used by Lithops, and it integrates the basic, low-level methods
to spawn functions in the cloud. The primary object in the Map-Reduce API of Lithops is executor.
This object allows to perform calls to the Lithops API to run parallel tasks. The standard way to get
everything set up is to import the module lithops, and call the class FunctionExecutor() to get an
instance of the executor:

Listing 1: Lithops example instantiating the FunctionExecutor
import lithops
lth = lithops.FunctionExecutor()

When an instance of the executor is created, a unique ID is assigned to the instance. This unique
ID is used later to keep track of function invocations and the results stored in the storage backend.
The executor loads the configuration (e.g., account details) required to grant Lithops access to the
compute and storage backends necessary to launch Lithops. Once you get an instance of the executor,
you can spawn functions with the next API methods:

. call_async(): The first proposed method is used to run asynchronously just one function in the
Cloud. This method is non-blocking, i.e., the sequential execution of the local code continues without
waiting for the results. The parameters of this method are the function_code and the input data that
the function executor receives.

. map(): The second proposed method is called map(). This method is used to run multiple function
executors. This method is also non-blocking and takes as main input the map_function_code and the
data that the map function executors receive. Unlike the prior method, this one receives as input data
a list the number of parallel functions to spawn, alongside with the input parameters that should be
sent to the functions.

. map_reduce(): The third proposed method is used to execute MapReduce flows, i.e., multiple map
function executors (map phase), and one or multiple reduce function executors (reduce phase). This
method is also be non-blocking. It takes as input the map_function_code, the input data as a list of

Page 10 of 62



H2020 825184 RIA
31/5/2022 CloudButton

Figure 3: Elasticity and Concurrency. Black lines show total concurrent functions. Each horizontal
gray line represents a function execution.

values, and the reduce_function_code. As in the prior method, it can spawn the desired number of
mappers and reducers.

. wait(): On the client side, the FunctionExecutor offers a method to monitor the executions. This
method is called wait(). It is synchronous, i.e., the local user code is blocked until the call to wait()
ends. It provides a configurable parameter to decide when to release the call and continue the execu-
tion. Moreover, a user can decide to unlock the method in three different circumstances: (1) ‘Always’:
it checks whether or not some result is available on the invocation of wait(). If so, it returns them.
Otherwise, it resumes the local execution; (2) ‘Any completed’: it resumes the local execution upon
termination of any function invocation; and (3) ‘All completed’: it waits until all the functions have
finished they execution and the results are available. In these three cases, the wait() method returns
a 2-tuple of lists: the first list with the futures that completed and the second with the uncompleted
ones.

. get_result(): This method is used to collect the results from the functions when a parallel task
has finished (e.g., map(), map_reduce(), etc.). It adds some functionality such as timeout support,
keyboard interruption to cancel the retrieval of results, and a progress bar to inform users about the
% of task completion. Last but not least, this method is composition-aware: it transparently waits for
an on-going function composition to complete, just returning the final result to users.

. plot(). This method is useful to display the execution trace of a parallel workflow. It outputs two
plots onto the destination folder dst of the user’s local filesystem. The first plot is a timeline diagram,
which, among other things, records the invocation, activation and completion times of each function
executor. The second plot is a horizontal histogram which is very convenient to quantify the degree
of concurrency of the different function executors. An example of this plot is shown in Figure 3 for
IBM Cloud Functions.

. clean(). This method allows to clean all the temporary data produced by Lithops once a job has
ended. Usually, it is automatically called after an invocation to get_result().

3.2 Storage API

To chain MapReduce jobs without forcing the client machine to download big intermediate state from
the cloud, Lithops provides the Storage API. This API makes it straightforward to operate the storage
backend with calls similar to those of the Python boto3 library. One can use the Storage API to upload
a file from our computer to a cloud storage service, and then read this file from a function spawned
with the call_async() method:

Listing 3: Example using the Lithops storage API
from lithops import FunctionExecutor, Storage
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BUCKET, KEY = ’my-bucket’, ’test.txt’

def get_file(key, storage):
return storage.get_object(bucket=BUCKET, key=KEY))

storage = Storage()
storage.put_object(bucket=BUCKET, key=KEY, body=’Hi!’)

with FunctionExecutor() as fexec:
fut = fexec.call_async(get_file, KEY)
print(fut.result())

3.3 Python multiprocessing API

We have extended Lithops with a multiprocessing module which fully implements the original
Python multiprocessing interface. Abstractions for parallel computing (like Process and Pool) use
Lithops FunctionExecutor API, while inter-process shared memory communication and synchroniza-
tion abstractions, like Lock, Pipe, Queue or Manager, leverage Redis key-value in-memory database
as an intermediary. Table 1 presents a list of the available abstractions, along with their category and
description.

Table 1: Python multiprocessing API components

CATEGORY ABSTRACTION DESCRIPTION

Computation Process, Pool Abstractions for launching
parallel processes.

Shared state Manager,
BaseManager,
Manager.dict,
Manager.list

High-level shared state
abstractions, basic types (list
or dict) or shared complex
objects (Manager,
BaseManager).

Connection Pipe Single-producer,
single-consumer
bi-directional
communication between two
processes.

Queues Queue,
SimpleQueue,
JoinableQueue

Ordered multiple-producer,
multiple-consumer queues.

Shared memory Value, Array Shared array for basic
C-types (int, float...).

Synchronization Lock, RLock,
Semaphore,
BoundedSemaphore,
Condition, Event,
Barrier

Objects for distributed
worker-to-worker
coordination and
synchronization.

Lithops multiprocessing enables to transparently port local-parallel applications written in Python
multiprocessing to a distributed Cloud and serverless environment without modifying the applica-
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Listing 4: Example using the Lithops multiprocessing API
# import multiprocessing as mp
import lithops.multiprocessing as mp
import random

def pi_montecarlo(n):
count = 0
for i in range(n):

x = random.random()
y = random.random()
if x*x + y*y < 1:

count += 1
return count

num_processes = 1000 # parallelism with 1000 processes is only possible with serverless!
num_points = 10000000
part_count = [int(num_points/num_processes)] * num_processes
pool = mp.Pool(processes=num_processes)
count = pool.map(pi_montecarlo, part_count)
pi = sum(count) / num_points * 4
print(f"Esitmated Pi: {pi}")

tion code or architecture. Providing transparency is a big deal for application programmers since
a user who is not familiar with distributed computing and Cloud computing can benefit from flex-
ible resources and scale and adapt to heavier workloads using familiar Python parallel computing
abstractions. Using serverless functions to scale local-parallel applications brings several benefits.
The main is productivity, since the user does not have to worry about provisioning and manag-
ing resources since the Cloud provider is managing them on their behalf. On the other hand, we
can massively and instantly scale applications that would otherwise require costly cluster synchro-
nization and management operations using virtual machines. However, making use of serverless
functions entails significant overheads caused in part by the need for indirect communication used
for stateful operations. In exchange, we can scale an application well beyond the physical limits of a
virtual machine.

Listing 4 represents a simple example of the basic usage of the Lithops multiprocessing library.
We can see that the code is valid for both local multiprocessing module and Lithops multiprocessing
module. We can therefore replace the import statement of the local multiprocessing library with
lithops.multiprocessing to simply use remote processes on serverless functions instead of local
processes.

Serverless functions cannot use direct communication since one of FaaS fundamental basis is
function isolation, i.e., a function has no knowledge of other functions that are being executed in
its environment. For this matter, Lithops multiprocessing shared components across processes are
transparently supported by using Redis database as an intermediary. We have chosen Redis for
its simplicity of deployment, in-memory storage and high performance. Redis differs from other
traditional key-value databases because values have a type, such as LIST, STRING or HASHSET. A dis-
tributed deployment of a Redis cluster can scale horizontally and fault tolerance is guaranteed thanks
to replication.

We have also incorporated to Lithops a replica of Python’s built-in open function and the os.path
module which allows to transparently read and write files and directories stored on object storage
service (like S3) as if it were a local file system. This is especially useful for FaaS since the volume that
is mounted in the function container is volatile and the data stored there is lost when the execution
finishes. In this sense, we offer serverless processes a transparent way to save or recover their state.

Python uses processes to achieve parallelism and to overcome the Global Interpreter Lock (GIL),
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Listing 5: Importing of equivalent API’s
# Modules used for local execution
# import os
# import multiprocessing as mp

# Modules used for remote execution
from lithops.Cloud_proxy import os, open
import lithops.multiprocessing as mp

# Other modules
import requests

Listing 6: Loading of model to the storage
WEIGHTS_URL = ’http://moments.csail.mit.edu/moments_models’
WEIGHTS_FILE = ’moments_RGB_resnet50_imagenetpretrained.pth.tar’

response = requests.get(WEIGHTS_URL + ’/’ + WEIGHTS_FILE)

with open(WEIGHTS_FILE, ’wb’) as weights_file: # Transparent access to storage
weights_file.write(response.content)

which prevents threads from executing in parallel on multi-core machines. With Lithops, launching
processes has considerable overhead. If the granularity of the tasks is very small, the overhead of
invoking many functions can be prohibitively expensive. To overcome this problem, we have im-
plemented the job queue pattern for the Lithops multiprocessing Pool. In Lithops multiprocessing,
workers are long-lived functions that are invoked when the Pool object is created. Operations on the
pool (map(), apply_async()...) enqueue Lithops tasks to a Redis list that are then picked up and
executed by multiple workers as they are generated. Once all jobs are finished and the worker pool
is closed, a message is sent to the workers to terminate their execution. The main advantage of this
implementation is that the overhead of submitting a set of tasks to a Redis list is much lower than
invoking a function for every task. Also, reusing functions to execute multiple tasks avoids stragglers
caused by cold invocations.

3.3.1 Application example: Deep learning video inference

This example uses Lithops multiprocessing to process videos from the Moments-in-Time video data-
set [74]. It predicts actions that appear in videos using a pretrained ResNet50 deep neural network
model. This code has been implemented first using local multiprocessing for development and
debugging purposes. In order to scale and processes a large amount of videos in parallel, it has
been ported to Lithops multiprocessing with minor modifications, so that processes are executed by
serverless functions that load data from Cloud storage. The storage is used to load input video files
and the serialized model for inference.

In Listing 5, we can see how the user can decide whether to use local or remote resources. By
replacing the local module import statements and importing Lithops module instead, enables to
access to either local files or remote files stored in the Cloud using the same sort of methods. After
this change, calls to the os module or open function will either happen in the local filesystem or in
the Cloud storage filesystem transparently to the user. In the same way, using Lithops mp.Pool will
invoke remote processes instead of local processes, while keeping the same API.

First, the model is downloaded from the respective repository and then transparently stored in
Cloud storage using the built-in open function. This step is necessary since the model has to be placed
in the storage for every function to be able to access it.
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Listing 7: Video prediction function
# Remote process function
def predict_videos(queue, video_locations):

with open(weights_location, ’rb’) as f:
model = load_model(f)

model.eval()
results = []

for video_loc in video_locations:
with open(video_loc, ’rb’) as video_file:

frames = extract_frames(video_file, NUM_SEGMENTS)
input_v = torch.stack([transform(frame) for frame in frames])

with torch.no_grad():
logits = model(input_v)
h_x = F.softmax(logits, 1).mean(dim=0)
probs, idx = h_x.sort(0, True)

result = {
’video_id’: video_loc,
’prediction’: (idx[0], round(float(probs[0]), 5))

}
results.append(result)

queue.put(results)

The video prediction function in Listing 7 shows a simple procedure that first loads the model
and then loads the input videos to make predictions one by one. After the inference of all videos is
completed, results are put in a queue that the main process reduces on the go. The reduce operation
(Listing 8) operation processes results from the queue at the time they are completed and sent to the
queue, and it creates a record with the total amount of predictions made for each category.

Finally, Listing 9 contains the main function code. First, the list of paths or keys of the input
videos is obtained. The list is split among N parts matching the desired concurrency, and thus, each
function may end up processing multiple videos. Then, Pool.map_async function is called to spawn
multiple remote processes. It spawns as many as there are elements in the list of input data iterdata.
After that, and since the last call was asynchronous, the main process starts performing the reduce
operation with the queue allowing it to process results immediately without having to wait for all of
them to complete.

As we can see, model inference is a good example of a process that can be embarrassingly par-
allelized thanks to Lithops multiprocessing, because there are no dependencies or communication
between functions and the use of serverless functions allows for massive scaling. We have been able
to see how using the same operations for local parallel programming we can scale the application
to process a large amount of videos stored in Cloud storage using thousands of processes without
changing the application logic nor code.

3.4 Experimental results: Map-Reduce API

In this section, we evaluate the performance of the Map-Reduce API through a real use case based
on www.airbnb.com (Airbnb).

3.4.1 Evaluation setting

For the experiments with the Map-Reduce API, we have used the IBM Cloud services in the us-east
region — i.e., Washington DC. As a baseline for our experiments, we have used a laptop with the
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Listing 8: Reduce function
# Local process function
def reduce_predictions(results_queue, n_results):

category_count = {}
for categ in categories:

category_count[categ] = 0

for i in range(n_results):
results = queue.get()
for res in results:

idx, prob = res[’prediction’]
category = categories[idx]
category_count[category] = category_count[category] + 1

return category_count

Listing 9: Main function
CONCURRENCY = 1000

# Main function
def main():

queue = mp.Queue()
pool = mp.Pool()

video_locations = [os.path.join(INPUT_DATA_DIR, name) for name in
os.listdir(INPUT_DATA_DIR)]

N = min(CONCURRENCY, len(video_locations))
iterdata = [(queue, video_locations[n::CONCURRENCY]) for n in range(N)]

pool.map_async(func=predict_videos, iterable=iterdata)
result = reduce_predictions(queue, N)
print(result)

if __name__ == ’__main__’:
main()
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following specs: Intel Core i5 (4 cores) with 16GB RAM and Ubuntu 20.04.
It is worth noting that the focus of Lithops is to simplify the parallel execution of everyday tasks

in the cloud, and not to compete with complex computing stacks running on warm clusters. In this
sense, it is more interesting to assess the performance benefits for non-cloud users, who typically run
programs at “laptop scale”. Or to put it baldly, the benefits from shifting from the laptop to the cloud.

3.4.2 Sentiment Analysis

As a real example of the Map-Reduce API, we have crafted a use case example to demonstrate how
Lithops can help to process datasets stored in IBM COS. For this example, we have used Airbnb data
from various cities around the world, in conjunction with a tone analyzer to uncover emotional and
language tones in written text. To make it more appealing, we have plotted the results visually on a
city map.

Datasets. The data was retrieved from IBM Watson Studio Community [75] and then copied to an
IBM COS bucket. In particular, there is a dataset per city, which contains all the apartment reviews
written by the users. As some cities are more “touristy” than others, the dataset size varies from city
to city. The full dataset is made of 33 cities, with a total size of 1.9GB and 3, 695, 107 comments.

Experiment. We first examine how much time the experiment takes without the concurrency of
Lithops. We built a Jupyter notebook in IBM Watson Studio to process sequentially all the cities. For
the hardware configuration of the VM, we borrowed the same specs of our laptop: 4vCPU with 16GB
of RAM. With this setup, it took 1 hour and 26 minutes to serially process all the 3, 695, 107 comments
and render the 33 city maps, which is a significant time burden, especially for impatient users.

Next, we redid the same experiment but with the aid of Lithops. Essentially, we performed some
cosmetic changes to the code to execute the experiment via the map_reduce() call. On the one hand,
we created another Jupyter notebook in IBM Watson Studio with the same hardware configuration
as in the prior test. On the other hand, we set up the Lithops IBM Cloud Functions runtime to use
1 GB of RAM.

We remember that it is possible to call map_reduce() with a specific chunk size. The chunk size
determines the final concurrency, so we played out with different chunk sizes to understand how it
affects the total execution time. Further, we set reducer_one_per_object=True to have a dedicated
reducer per city dataset. That is, each reducer collected the partial results from its corresponding city
and rendered the final map. An example of a map is depicted in Figure 4. In this case, it represents
the tone analysis of the comments of the City of New York. Each point in the map represents the
location of the apartment, and the color of the point signals the tone of the comments.

Table 2: Performance of tone analysis of Airbnb reviews for different chunk sizes. The results are
better than in our preliminary work [76] as they have been expressly re-run for this deliverable.

Chunk size (MB) Number of
executors

Execution time
(sec)

Speedup

——- ——- 5160 Baseline

64 47 313.87 16.43x

32 72 196.24 26.29x

16 129 95.48 54.04x

8 242 59.77 86.33x

4 471 35.01 147.38x

2 923 25.58 201.72x
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Figure 4: Tone analysis of the Airbnb reviews of New York City. Green, blue and red points stand for
good, neutral, and bad comments, resp.

Results. In Table 2, we report the results of this experiment. A first key observation to be made is that
Lithops achieved excellent speedups, greater than 100x. This proves the huge benefit of Lithops to
non-cloud users, who can readily leverage the large number of CPU cycles available in the cloud,
with no need to struggle with hardware management and specialized stacks such as Spark and MPI.
In practice, although Lithops exhibits some overhead, users would not care as much about parallel
efficiency, but more about the savings in compute times with close to zero devops cost.

Notice that the number of function executors does not duplicate when halving the chunk size.
This occurs because partitioning takes place within each dataset file. Either way, the achieved parallel
execution time is proportional to the number of function executors, growing between 16.43x and
201.72x for chunks of 64MB and 2MB, respectively.

3.5 Transparent migration of Python multiprocessing applications

In this section, we evaluate the behavior of Lithops in two real use cases in order to test full ac-
cess transparency and to measure performance. The scenarios used are: the POET modifications in
Evolution Strategies made by the Uber research team, and the implementation of the OpenAI’s Prox-
imal Policy Optimization (PPO) algorithm in its Baselines repository. To adapt these applications
to serverless, we only had to replace the multiprocessing import with Lithops.multiprocessing.
Since Lithops fully implements the multiprocessing interface, the rest of the code did not need any
further modification.

3.5.1 Evaluation settings

This section describes the configuration with which the experiments described below have been car-
ried out. Experiments have been run with the following settings: Lithops orchestrator runs on a
m5.2xlarge EC2 host with Ubuntu 20.04, Lambdas use a containerized Python 3.8 runtime with 1769
MB of RAM 4 as serverless function and Redis 6.2 instance runs on the host machine with Docker.
The host machine and the AWS Lambdas are in the same VPC private subnet, region and availabil-
ity zone (us-east-1 A), so traffic does not go through a NAT gateway nor the public internet. All
Lambda functions have been executed using warm containers. All local monolithic executions have

4According to AWS documentation [77], a runtime of 1769 MB of memory is assigned a whole vCPU, being a vCPU a
thread of a CPU with Hyper-Threading [78].
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been carried out using on-demand AWS EC2 instances with different number of vCPUs.

3.5.2 Evolution strategies

In this experiment, we have used the Paired Open-Ended Trailblazer (POET) [79] implementation,
which is a large Python application with about 4000 LOC (lines of code) using different multiprocess-
ing abstractions like Pool or a shared dictionary from a Manager (Manager.dict()). This algorithm
is part of the Evolution Strategies category, in which, evolutions of an initial population are carried
out iteratively, and those evolutions are executed in parallel. The objective of this test is to analyze
and compare the performance and scalability of Lithops in an iterative algorithm that maintains and
uses a shared state between processes.

POET uses a shared noise table which is used to generate randomness in the evolution process.
This noise table is originally implemented using shared memory. However, it is initialized when
the module is loaded, so it is not using Lithops multiprocessing implementation for shared memory.
Instead, since this table is read-only, each function can initialize its noise table independently of the
shared memory. The algorithm also uses a shared table of parameters that are modified in each
iteration. This shared data structure is implemented as a shared multiprocessing Manager.dict()
dictionary. Therefore, there is a certain transmission of data that could imply a significant overhead.

The multiprocessing abstractions used in POET are: one Context set to spawn mode, one Pool
for tasks executions, one Manager with two Dict that contain the shared stated used by all the worker
processes from the Pool.

Each iteration of the algorithm performs a Pool.map() operation. As the task granularity is small
(about 3 seconds), to try to mitigate overheads, we used the optimization of the Pool with job queue
explained before. To carry out the measurements we have executed 5 iterations with 512 batches per
chunk and a batch size of 5. All local executions have been run on a c5.24xlarge EC2 instance.

The results in Figure 5 show that, despite the data transmission and invocation overheads, Lithops
maintains constant scalability similar to the scalability of the VM. The maximum speedup of the VM
is about 40x, while Lithops is capable of reaching a speedup of around 53x, improving the best result
of the VM.
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Figure 5: Evolution Strategies execution results.
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Proximal Policy Optimization

OpenAI Baselines [80] is a set of high-quality implementations of reinforcement learning algorithms.
It has been open-sourced to be used as a base, around which, new ideas can be added and as a tool
for comparing new approaches in the reinforcement learning field. At the time of performing the
experiments, the Baselines code repository contains more than 16,700 lines of Python code, so it can
be considered as a complex Python module. In this experiment, we want to verify that thanks to
the access transparency provided by Lithops multiprocessing we can simulate the vertical scaling of a
virtual machine using FaaS as processes.

We have used the multiprocessing implementation of the Proximal Policy Optimization (PPO)
algorithm from OpenAI baselines. The multiprocessing PPO version is the second implementation
released by OpenAI, and it inherits some of its structure from the first version, which was based on
MPI. For that reason, the multiprocessing PPO uses a master/worker paradigm relying on Pipes for
the master to worker communications and vice versa.

The master process is in charge of training the model (a neural network) which, for a given sce-
nario, decides the optimum action to do in order to maximize an objective function. The worker
processes are used to simulate the environment in which actions are performed and a reaction is ob-
tained. It is important to notice that each worker process simulates an environment. The training of
the model is an iterative procedure where the workers send to the master the actual state of the envi-
ronment, and it responds with an action to perform in each environment. From the multiprocessing
API, PPO uses 1 Context with the pawn mode by default. Associated to that Context, it creates 1
Process and 1 Pipe for each environment emulated. The communication between the master and
workers (where states and actions are transmitted) is performed using the Pipe associated to each
worker Process.

In this experiment, we are training a neural network to play the Atari game Breakout, which is
available in the OpenAI GYM [81]. Notice that due to the TensorFlow 1 dependency, we have used
Python 3.7 in this experiment.

As this algorithm requires the use of a GPU in the master process for the neural network training,
the settings for this experiment have been modified. We have used an AWS p3.2xlarge VM as mono-
lithic system, and we tried to scale it vertically using AWS Lambdas. Since the GPU is just used in the
master process that runs in the Lithops orchestrator and not in the workers that just do environment
simulation, the configuration of the AWS lambdas has not been modified.

The results, available in Figure 6, show that despite the constant communication between pro-
cesses and the great overhead that this entails, the combination of VM and Lithops achieves a better
performance than just the VM. In more detail, the best result for the VM is achieved using 16 pro-
cesses with a total execution time of 68.92s and the best result of the VM + Lithops is achieved using
64 processes with a total execution time of 61.10s, therefore it reduces an 11% the execution time.
This validates that we can emulate a vertical scaling of the VM, and that it is possible to add vCPUs
to a VM instantly and without prior provisioning thanks to the use of FaaS.

3.5.3 Insights and lessons learned

After studying the results of the evaluation, we have learned that we are able to transparently move
local-parallel applications to distributed settings using serverless. Nevertheless, we have chosen only
two representative Python applications that use the multiprocessing library. By this, we do not want
to make the claim that all applications can be transparently scaled using serverless without significant
degradation. In this section, we would like to discuss the insights obtained from the evaluation that
have implications on the feasibility of transparency using serverless services.

Shared state interfaces

Clean shared memory abstractions to communicate processes are very important. Structured and
consistent access to shared state requires suitable programming abstractions. In this case, Python
multiprocessing design is a clear facilitator for achieving transparency. The ability to perform par-
allel execution in Python using threads is limited by the GIL, which prevents multiple threads from
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Figure 6: PPO execution results.

running simultaneously on multiprocessor architectures. For this reason, in Python, it is necessary
to use processes to have true parallelism. Many of the principles of multiprocessing abstractions,
such as Manager, are based on message passing and accessing shared objects (queues, dictionaries,
lists. . . ) instead of traditional memory sharing. For example, in a multi-thread application written
in Java, two parallel threads can access a shared object by a reference pointer. In contrast, in Python
multiprocessing, two processes access to shared state by using messages through a third process (the
Manager) that has the shared state. The fact that two Python processes can’t share the same address
space5 has facilitated the port of this library to its distributed implementation using disaggregated
resources. If the code is not using adequate programming abstractions, full transparency may be
impossible.

Latencies and overheads

Overheads are still relevant for many applications. Current Cloud settings still show relevant la-
tency in communications, like hundreds of milliseconds to launch a serverless function, or hundred
of microseconds to access in-memory storage services. We have seen that, with equal resources,
the overheads generated by creating processes and by the latency of access to shared state are very
noticeable. In this line, the granularity of computing tasks is clearly limited by overheads. Very fine-
grained computing tasks do not make sense in the current Serverless model, since the overheads can
be greater than the task run time.

Performance

Some parallel applications have certain advantages in Cloud Serverless settings that may help to
mitigate some of the overheads.

First, hyper-threading may cause performance degradation in virtual machines for compute-
intensive tasks using all vCPUs. Hyper-threading makes two threads share some CPU resources like
the Arithmetical Logic Unit (ALU). For computationally intensive tasks, two threads are constantly
fighting for the shared resources, so the CPU cannot keep up and the execution time is degraded.
In HPC, disabling hyper-threading is a common practice to avoid these problems, although the ca-
pacity of effective parallelism is reduced by half. For Serverless Functions, AWS Lambda assigns a

5except for the multiprocessing.Array abstraction, which can only store basic C types
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vCPU (an hyper-threaded CPU thread) per function with a memory configuration of 1769 MB. How-
ever, our observations show that the inefficiencies caused by hyper-threading in VMs do not occur
in Lambda function executions. This provides an opportunity to further improve the parallelism of
high-performance applications that require a full physical CPU for better performance.

Second, accessing large volumes of data in Cloud Object Storage from Serverless functions helps
to aggregate bandwidth and accelerate data transfers. A single VM cannot compete with parallel
data flows from multiple functions.

In addition, as we have seen in the validation of Section 3.5.2, disaggregated resources can serve
as “accelerators” for a VM. That is, when a VM reaches the maximum occupancy of local resources,
it could allocate and move computation to disaggregated resources, e.g., to serverless functions. In
this way, we could benefit from both fast-access local memory for shared state-dependent processes
running on the VM and high flexibility and scalability for stateless processes.

Fault tolerance and serverless services

The fault tolerance of our solution is based on the assumption that the underlying disaggregated
resources are fault-tolerant. When programming a monolithic local system, fault tolerance is not
taken into account because local resources do not fail. When we move to a distributed environment,
if the disaggregated resources (compute, memory and storage) mask the possible failures that may
occur, then the application programmer can also assume that they will not fail, and we can continue
with the same programming model that does not contemplate error handling and rely on the same
local programming model.

Precisely, both AWS Lambda and AWS S3 are fault-tolerant. AWS Lambda can detect and retry
failed invocations, while AWS S3 objects are replicated. However, in-memory storage is still not
offered as a managed service with scalability and fault tolerance. We are relying on a dedicated
Redis service, which must be properly managed now. If the data flows exceed the capacity of this
intermediate node, the experiment would fail.

Regarding storage, we are now intercepting file access that is routed to Object Storage. But Object
Storage has certain limitations regarding small files or read/write operations. Intensive use of such
operations by applications would also preclude transparency. Serverless disaggregated memory and
fine-grained storage services are needed in the Cloud.

3.5.4 Conclusions

We have demonstrated that Python’s multiprocessing message-passing shared state design enables
to seamlessly port local-parallel applications over disaggregated serverless resources in the Cloud.
Despite the considerable added overheads, applications that do not require heavy access to shared
memory do not exhibit performance degradation compared to a resource-equivalent VM. On the
other hand, serverless cloud services, such as FaaS or object storage, allow to massively exploit the
parallelism of applications to further reduce the execution time and increase the speedup, all without
the need to modify the application code or architecture thanks to access transparency. These results
lead us to expect that, when network latencies are reduced, access transparency will become more
viable, which has important implications, such as transparently porting legacy applications to the
Cloud or the ability to program the Cloud as a parallel supercomputer, thus hiding the complexities
of distributed systems.
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Abstraction Description

CloudThread Cloud functions are invoked like threads.

ServerlessExecutorService A simple executor service for task groups and distributed parallel fors.

Shared objects Linearizable (wait-free) distributed objects (e.g., AtomicInt, AtomicLong,
AtomicBoolean, AtomicByteArray, List, Map).

Synchronization objects Shared objects providing primitives for thread synchronization (e.g., Future,
Semaphore, CyclicBarrier).

@Shared User-defined shared objects. Object methods run on the DSO servers, allowing
fine-grained updates and aggregates (e.g., .add(), .update(), .merge()).

Data persistence Long-lived shared objects are replicated. Persistence may be activated with
@Shared(persistence=true).

Table 3: CRUCIAL programming abstractions

4 CRUCIAL: Serverless multi-threaded applications

CRUCIAL is a system for the development of stateful distributed applications on serverless environ-
ments. To simplify the writing of an application, CRUCIAL provides a thread abstraction that maps
a thread to the invocation of a serverless function: the cloud thread. This abstraction can be extended
to build task management systems with serverless thread pools. To support fine-grained state man-
agement and coordination, our system builds a distributed shared object (DSO) layer on top of a
low-latency in-memory data store. This layer provides out-of-the-box strong consistency guarantees,
simplifying the semantics of global state mutation across cloud threads. Since global state is manip-
ulated as remote objects, the interface for mutable state management becomes virtually unlimited,
only constrained by the expressiveness of the programming language (Java in our case). The result is
that CRUCIAL can operate on small data granules, making it easy to develop applications that have
fine-grained state sharing needs. CRUCIAL also leverages this layer to implement fine-grained coor-
dination. For applications that require longer retention of in-memory state, CRUCIAL ensures data
durability through replication. To ensure the consistency of replicas, CRUCIAL uses state machine
replication (SMR), so that any acknowledged write can survive failures.

CRUCIAL also focuses in not increasing the programming complexity of the serverless model.
With the help of a few annotations and constructs, developers can run their single-machine, multi-
threaded, stateful code in the cloud as serverless functions. CRUCIAL’s programming constructs
enable developers to enforce atomic operations on shared state, as well as to finely synchronise func-
tions at the application level, so that (imperative) implementations of popular algorithms such as
k-means can be effortlessly ported to serverless platforms.

A complete description of the design, implementation and evaluation of CRUCIAL is detailed in
D4.2. Here we provide a description of its API and programming abstractions.

4.1 CRUCIAL programming model

CRUCIAL presents an object-based programming model that can be integrated with any concurrent
object-oriented language. Our prototype library supports the Java programming language. Programs
in CRUCIAL resemble regular multi-threaded, object-oriented Java ones. The library is based on
annotations and simple constructs that the user uses or substitutes in their code, allowing to easily
move applications to the cloud. The abstractions comprise execution constructs and shared objects
and are summarised in Table 3.

4.1.1 Execution abstractions

Cloud threads. Users code their applications as programs that run multiple threads concurrently.
When using CRUCIAL, a conventional parallel computing Thread is replaced with a CloudThread,
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which is the smallest unit of computation in the library. Tasks that run on threads are still defined
as a Runnable and passed to a CloudThread that executes it. The distinction resides in that this class
hides execution details that allow the tasks to run on a cloud function in the FaaS platform.

Serverless executor service. As a higher-level execution abstraction, CRUCIAL offers the Serverless-
ExecutorService. This class allows the execution of Runnable and Callable objects by implement-
ing the Java ExecutorService interface. It facilitates the submission of individual tasks and fork-join
parallel constructs (invokeAll) to the cloud, retaining the full expressivity of the original interface.
Additionally, this executor also includes a distributed parallel for to run n iterations of a loop across
m workers. To use this feature, the user specifies the in-loop code (through a functional interface),
the boundaries for the iteration index, and the number of workers m.

4.1.2 State abstractions

State handling. The library already includes a set of base shared objects to support mutable shared
data across serverless functions. This group consists of common objects such as integers, counters,
maps, lists and arrays. These objects are wait-free and linearizable. This means that each method
invocation terminates after a finite amount of steps (despite concurrent accesses), and that concurrent
method invocations behave as if they were executed by a single thread. The @Shared annotation also
gives programmers the ability to craft their own custom shared objects. The library refers to an
object with a key crafted from the field’s name of the encompassing object. The programmer can
override this definition by explicitly writing @Shared(key=k). Distributed references are supported,
permitting a reference to cross the boundaries of a cloud thread. This feature helps preserve the
simplicity of multi-threaded programming in CRUCIAL.

Data Persistence. Shared objects in CRUCIAL can be either ephemeral or persistent. By default, shared
objects are ephemeral and only exist during the application lifetime. Once the application finishes,
they are discarded. Nonetheless, it is also possible to make them persistent with the annotation
@Shared(persistent=true). In such a case, the annotated object outlives the application lifetime
and is only removed from storage by an explicit call.

Synchronisation Vanilla serverless functions support only uncoordinated embarrassingly parallel
operations, or bulk synchronous parallelism (BSP). To provide fine-grained coordination of cloud
threads, the library offers a number of primitives such as cyclic barriers and semaphores. These
coordination primitives are semantically equivalent to those in the standard java.util.concurrent
library. They allow a coherent and flexible model of concurrency for serverless functions that is, as
of today, non-existent.

4.2 Sample applications

Listing 10 presents an application implemented with CRUCIAL. This simple program is a multi-
threaded Monte Carlo simulation that approximates the value of π. The application uses the cloud
thread abstraction to coordinate a fork-join thread structure that runs several instances of a regular
Runnable class. The tasks carry the estimation of π and use the library’s shared object counter to store
their global state. The previous fork-join pattern can also be implemented using the Serverless-
ExecutorService. In this case, instead of directly creating the threads, we simply use the content of
Listing 11.

An application that outputs an image approximating the Mandelbrot set with a gradient of colours
is shown in Listing 12. In this case, the shared state is a user-defined class that is annotated with
@Shared. The basic structure of the algorithm is a simple loop that can be parallelised. The rows
of the image are processed in parallel, using the invokeIterativeTask method of the Serverless-
ExecutorService class. This method takes as input a functional interface (IterativeTask) and three
integers. The interface defines the function to apply on the index of the for loop. The integers de-
fine respectively the number of tasks among which to distribute the iterations, and the boundaries of
these iterations (fromInclusive, toExclusive).

This second example illustrates the expressiveness and convenience of our library. In particular,
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Listing 10: Monte Carlo simulation to approximate π.
public class PiEstimator implements Runnable{

private final static long ITERATIONS = 100_000_000;
private Random rand = new Random();
@Shared(key="counter")
crucial.AtomicLong counter = new crucial.AtomicLong(0);

public void run(){
long count = 0;
double x, y;
for (long i = 0L; i < ITERATIONS; i++) {

x = rand.nextDouble();
y = rand.nextDouble();
if (x * x + y * y <= 1.0) count++;

}
counter.addAndGet(count);

}
}

List<Thread> threads = new ArrayList<>(N_THREADS);
for (int i = 0; i < N_THREADS; i++) {

threads.add(new CloudThread(new PiEstimator()));
}
threads.forEach(Thread::start);
threads.forEach(Thread::join);
double output = 4.0 * counter.get() / (N_THREADS * ITERATIONS);

Listing 11: Using the ServerlessExecutorService to perform a Monte Carlo simulation.
ServerlessExecutorService se = new ServerlessExecutorService();
List<Callable> tasks = IntStream.range(0, N_THREADS).mapToObj(i -> Executors.callable(new

PiEstimator())).collect(Collectors.toList());
se.invokeAll(tasks);

as in multi-threaded programming, CRUCIAL allows to express concurrent tasks with lambdas and
pass them shared variables defined in the encompassing class.

The k-means implementation in Listing 13 shows a more complex application that uses synchro-
nisation primitives like a barrier.

4.3 Porting to serverless

Benefits and target applications CRUCIAL can be used not only to program serverless-native ap-
plications, but also to port existing single-machine applications to serverless. Successfully porting
an application comes with several incentives; namely the ability to (i) access on-demand comput-
ing resources; (ii) scale these resources dynamically; and (iii) benefit from a fine-grained pricing for
their usage. To match the programming model of CRUCIAL, Java applications that can benefit from a
portage should be multi-threaded. Moreover, as with other parallel programming frameworks, they
should be inherently parallel.

Methodology Low effort is required to port existing Java applications with CRUCIAL. The follow-
ing steps should be taken: (1) Replace the ExecutorService or Thread instances with their CRUCIAL

counterparts (Table 3). (2) Make Serializable each immutable object passed between cloud threads.
(3) Substitute the concurrent mutable objects shared by threads with the equivalent ones provided
by the DSO layer. For example, an instance of java.util.atomic.AtomicBoolean is replaced with
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Listing 12: Mandelbrot set computation in a distributed parallel for.
public class Mandelbrot implements Serializable {

@Shared(key = "mandelbrotImage")
private MandelbrotImage image = new MandelbrotImage();

private static int[] computeMandelbrot(int row, int width, int height, int maxIters)
{...}

private void doMandelbrot() {
image.init(COLUMNS, ROWS);
ServerlessExecutorService se = new ServerlessExecutorService();
se.invokeIterativeTask((row) -> image.setRowColor(row, computeMandelbrot(row,

COLUMNS, ROWS, MAX_INTERNAL_ITERATIONS)), N_TASKS, 0, ROWS);
se.shutdown();

}
}

org.crucial.dso.AtomicBoolean. (4) Regarding synchronization primitives, transform them into
distributed objects. For example, a cyclic barrier can be replaced with org.crucial.dso.CyclicBarrier.
(5) If the application uses the synchronized keyword, some rewriting is necessary. Recall that this
keyword is specific to the Java language and allows to use any (non-primitive) object as a moni-
tor [82].

CRUCIAL does not support the synchronized keyword out of the box since it would require
modifying the JVM. Two solutions are offered: (i) create a monitor object in DSO and use it where
appropriate; or (ii) create a method for the object used as a monitor that contains all the code in
the synchronized{..} block. Then, this object is annotated as @Shared in the application, and the
method called where appropriate. The first solution is simple, but it might not be the most efficient
since it requires to move data back and forth the cloud threads that use the monitor. The second
solution needs rewriting part of the original application but is more in line with the object-oriented
approach in CRUCIAL and it may perform better.

Limitations and solutions The above methodology works for most applications, yet it has limi-
tations. First, some threading features are not available in the framework —e.g., signaling a cloud
thread. Second, CRUCIAL does not natively support arrays (e.g., T[] tab). Recall that Java offers
native methods to manipulate such data types. For instance, calling tab[i]=x assigns the value (or
reference) x to tab[i]. Transforming a native call is not possible with just annotations. The solution
to these two problems is to rewrite the application appropriately, as in the case of synchronized.

Another issue is related to data locality. Typically, a multi-threaded application initialises shared
data in the main thread and then makes it accessible to other threads for computation. Porting such
a programming pattern to FaaS implies heavy data serialization, which is inefficient.

Instead, we can pass a distributed reference that is lazily de-referenced by the thread. To illustrate
this point, consider Listing 14 which counts the number of occurrences of the word “serverless” in a
document. The application first constructs a reference to the document (line 2). Then, the document is
split into chunks. For each chunk, the number of occurrences of the word is counted by a cloud thread
(line 8). The results are then aggregated in the shared counter “wordcount”. Reading the document
in full at line 2 and serializing it to construct the chunks is inefficient. Instead, the application should
send a distributed reference to the cloud threads at line 8. Then, upon calling split, the chunks are
created on each thread by fetching the content from remote storage.

Page 26 of 62



H2020 825184 RIA
31/5/2022 CloudButton

Listing 13: k-means implementation with CRUCIAL.
public class KMeans implements Runnable{

private CyclicBarrier barrier = new crucial.CyclicBarrier();
@Shared(key = "delta")
private GlobalDelta globalDelta = new GlobalDelta();
@Shared(key = "iterations")
private AtomicInteger globalIterCount = new AtomicInteger();
// Wraps a list of @Shared centroids
private GlobalCentroids centroids = new GlobalCentroids();

public void run(){
loadDatasetFragment();
int iterCount = globalIterCount.intValue();
do {

correctCentroids = globalCentroids.getCorrectCoordinates();
resetLocalStructures();
localDelta = computeClusters();
globalDelta.update(localDelta);
centroids.update(localCentroids, localSizes);
barrier.await();
globalIterCount.compareAndSet(iterCount, iterCount++);

} while (iterCount < maxIterations && !endCondition());
}

}

Listing 14: Parallel word count.
public class WordCount {

private Document document = new Document(LOCATION);
private String word = "serverless";
private void compute() {

AtomicLong counter = new AtomicLong("wordcount");
ServerlessExecutorService se = new ServerlessExecutorService();
se.invokeIterativeTask(i -> counter.addAndGet(countWords(word, document.split(i))),

N_TASKS, 0, N_TASKS);
}

}
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5 FAASM: High-performance thread-based serverless

FAASM is a high-performance stateful serverless runtime, which isolates functions using a lightweight
mechanism called a Faaslet. Faaslets are based on threads, which operate in a shared address space
on each host. This means that, while Faaslets provide isolation and fair access to resources, they also
support concurrent, zero-copy access to shared state held in memory. This is in contrast to existing
serverless platforms which isolate functions in their own container of VM, and do not support paral-
lel processing on shared data. This thread-based approach makes FAASM uniquely placed to support
thread-based programming models, such as OpenMP and MPI, as well as more simple applications
based on pthreads.

5.1 FAASM and serverless big data

In addition to locally shared state, FAASM synchronises state across hosts using a two-tier state archi-
tecture. This two-tier state, coupled with lightweight Faaslet isolation, is how FAASM address two
key problems facing highly parallel serverless big data, namely the container resource footprint and
data access overhead.

The container resource footprint is the high cost associated with container-based isolation, when
compared to the short-lived, high-volume functions that make up serverless big data. Containers
have start-up latencies in the hundreds of milliseconds to several seconds, leading to the cold-start
problem in today’s serverless platforms [37, 49]. The large memory footprint of containers limits
scalability—while technically capped at the process limit of a machine, the maximum number of
containers is usually limited by the amount of available memory, with only a few thousand containers
supported on a machine with 16 GB of RAM [83].

Data access overheads are caused by the stateless nature of existing container-based platforms,
which force state to be maintained externally, e.g. in object stores such as Amazon S3 [61] or passed
between function invocations. Both options incur costs due to duplicating data in each function,
repeated serialisation, and regular network transfers. This results in current applications adopt-
ing an inefficient “data-shipping architecture”, i.e. moving data to the computation and not vice
versa—such architectures have been abandoned by the data management community many decades
ago [47]. These overheads are compounded as the number of functions increases, reducing the bene-
fit of unlimited parallelism, which is what makes serverless computing attractive in the first place.

Faaslets provide multi-tenant isolation with orders of magnitude lower overheads than containers
or VMs. This is done in part, using software fault isolation (SFI) with WebAssembly [33]. Each function
associated with a Faaslet, together with its library and language runtime dependencies, is compiled
to WebAssembly before being uploaded to the system. The FAASM runtime then executes multiple
Faaslets, each with a dedicated thread, within a single address space. For resource isolation, the CPU
cycles of each thread are constrained using Linux cgroups [84] and network access is limited using
network namespaces [84] and traffic shaping. Many Faaslets can be executed efficiently and safely on a
single machine.

Since Faaslets share the same address space, they can access shared memory regions with local
state efficiently. This allows the co-location of data and functions and avoids serialisation overheads.
Faaslets use a two-tier state architecture, a local tier provides in-memory sharing, and a global tier
supports distributed access to state across hosts. The FAASM runtime provides a state management
API to Faaslets that gives fine-grained control over state in both tiers. Faaslets also support stateful
applications with different consistency requirements between the two tiers.

5.2 Faaslets

Faaslets are the isolation mechanism used in FAASM and are shown in Figure 7. They are built
around an instance of a WebAssembly module to provide the necessary isolation guarantees for
multi-tenancy in serverless clouds; in contrast, traditional serverless systems typically rely on con-
tainers [34, 36]. Faaslets provide a more lightweight execution environment than containers by only
virtualising the necessary environment for serverless functions. Therefore, Faaslets have a low mem-
ory footprint and can be spawned in the hundreds of microseconds against hundreds of milliseconds
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Figure 7: Faaslet isolation in FAASM

for container. This brings Faaslets much closer to the user’s idea of the programming model of a
function, which FaaS is meant to provide and is the unit of granularity that FAASM manages. We
provide below details of the resource control FAASM has in place.

Memory safety using WebAssembly. The untrusted user code is compiled to WebAssembly, which
can be translated to a safe intermediate representation (IR). Once instantiated, the WebAssembly code
running inside the Faaslet is guaranteed to only access its linear memory through efficient bounds
checking. Segments of this linear memory can, however, be mapped to multiple Faaslets simultane-
ously, enabling shared in-memory regions to be efficiently shared when Faaslets are co-located on a
host. This can be enforced by an appropriate scheduling policy from the runtime.

CPU access using cgroups. On each host, Faaslets run as part of a shared thread pool within a
process control group (cgroup)—a technology shared with containers—to establish fair local CPU
access guaranteed by the Linux kernel [84].

Network access using namespaces, virtual interfaces and traffic shaping. Each Faaslet has a sepa-
rate virtual network interface which resides in its own network namespace to provide isolated access
to networking . Traffic shaping is applied to this virtual interface to limit the rate of traffic at the
function level. This is to ensure they cannot saturate the host and is a useful monitoring point for
network usage. This can be used to mitigate low bandwidth issues, especially important given that
it is possible to pack many more Faaslets per machine than containers.

To mitigate the serverless cold starts (Section 2.2), users can define initialisation code separately from
their main function code, during which the language runtime and packages will be loaded. The
resulting WebAssembly memory can be safely serialised at this point and saved to the state which
once pulled on each host set to run this Faaslet will speed up start-up times by 490× compared to the
equivalent start-up process for a container.

5.3 Host interface

Faaslets interact with the platform using import functions that are provided to users modules by the
FAASM runtime to control the execution of serverless functions or perform traditional OS and libc
operations. The FAASM host interface is outlined in Table 4. The following summarises the main
features of the host interface, which our programming abstraction can exploit:

Serverless-specific APIs. There are two main types of serverless operations to support. First, Faaslets
can invoke other Faaslets and wait for their completion with custom mechanisms to set and get in-
put data. Second, Faaslets can interact with the shared memory state described below (§??) by being
provided direct pointer access to it. This latter feature makes Faaslets more suitable for big data
processing than other serverless isolation such as shared-nothing containers that have to rely on
HTTP protocols to operate on any shared data. Even serverless edge computing platforms such as
Fastly [86] or CloudFlare [87], which also use WebAssembly, can only share state through external
distributed key-value stores for their workers [88, 89].
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Class Function Action Standard

Calls

byte* read_call_input() Read input data to function as byte array

none

void write_call_output(out_data) Write output data for function
int chain_call(name, args) Call function and return the call_id
int await_call(call_id) Await the completion of call_id
byte* get_call_output(call_id) Load the output data of call_id

State

byte* get_state(key, flags) Get pointer to state value for key
byte* get_state_offset(key, off, flags) Get pointer to state value for key at offset
void set_state(key, val) Set state value for key
void set_state_offset(key, val, len, off) Set len bytes of state value at offset for key
void push/pull_state(key) Push/pull global state value for key
void push/pull_state_offset(key, off) Push/pull global state value for key at offset
void append_state(key, val) Append data to state value for key
void lock_state_read/write(key) Lock local copy of state value for key
void lock_state_global_read/write(key) Lock state value for key globally

Dynlink void* dlopen/dlsym(...) Dynamic linking of libraries

POSIX
int dlclose(...) As above

Memory void* mmap(...), int munmap(...) Memory grow/shrink only
int brk(...), void* sbrk(...) Memory grow/shrink

Network int socket/connect/bind(...) Client-side networking only

WASI

size_t send/recv(...) Send/recv via virtual interface

File I/O int open/close/dup/stat(...) Per-user virtual filesystem access
size_t read/write(...) As above

Misc int gettime(...) Per-user monotonic clock only
size_t getrandom(...) Uses underlying host /dev/urandom

Table 4: FAASM host interface (The final column indicates whether functions are defined as part of
POSIX or WASI [85].)

WASI & POSIX compatibility. This part of the host interface deals with application control of
memory, files, network, clock, and random numbers within the limits of WebAssembly safety guaran-
tees. The WebAssembly System Interface (WASI) [90] aims to standardise server-side WebAssembly.
This means that user applications, which previously had to be compiled with an unknown operating
system target, can now be compiled for the more portable wasi platform. The popularity of WASI is
growing, and with it the number of programs that can run in Faaslets without modifications.

Interface extensibility. Although WASI-core contains a fairly small number of essential operations,
it is not designed with serverless compatibility in mind. As such the FAASM host interface has the
issue of striving to be a sensible serverless interface, whilst having to support both POSIX and WASI
concepts. It is challenging to map existing POSIX/WASI concepts to serverless because those two
system interfaces can conflict with each other. For example, POSIX and WASI both have a concept of
threads, but it can be non-trivial to figure out what their accompanying synchronisation mechanisms
should translate to.

Byte arrays. Function inputs, results and state are represented as simple byte arrays, as is all func-
tion memory. This avoids the need to serialise and copy data as it passes through the API, and makes
it trivial to share arbitrarily complex in-memory data structures.

5.4 Building FAASM functions

Each function in FAASM is first compiled to WebAssembly and uploaded to the system. To convert
this into an executable, it needs to be combined with the host interface and other FAASM helper li-
braries. This process is outlined in Figure 8 and is made up of three steps, with the user only aware
of the first. This first step generates a WebAssembly module that can safely handled onwards thanks
to the WebAssembly guarantees [33]. FAASM relies on a trustworthy open-source WebAssembly em-
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Figure 8: Creation of a Faaslet executable

bedder, WAVM [91] and LLVM-JIT libraries [92], to validate and manipulate WebAssembly modules
and object code, which make up the second and third steps. A more detailed description for C/C++
functions is as follows:

1. The user project and the FAASM public library function declarations are compiled to a Web-
Assembly module using the FAASM toolchain. The library functions are unresolved symbols,
which means that they are declared as import functions in the module. The user can then up-
load the Wasm module to a FAASM host.

2. The Wasm module is verified by the embedder and compiled to an object file that can be linked
with the FAASM libraries later. This allows to update the host interface without recompiling the
user’s project.

3. The library public function definitions are provided as export functions and intrinsics along
with the rest of the host interface. Those are linked with the object files and the linker can now
resolve the previous import functions and output a trusted executable.

In step 1, the user compiles their code using the FAASM toolchain that includes the popular LLVM
compiler infrastructure [92] (i.e., Clang, compiler-rt, libcpp, etc.), which was built to cross-compile
to WebAssembly. The shipped libc is musl [93], a small and fast libc implementation compared
to the traditional glibc [94]. FAASM is also compatible with dynamic languages too. It supports
the ubiquitous CPython language runtime for which the host interface supports dynamic library
loading. FAASM relies on projects such as Pyodide to compile the main scientific Python packages to
Wasm [95, 96] and import them in user programs.

5.5 State

Faaslets expose state through their low-level state API, or through distributed data objects (DDO).
DDOs are language-specific classes that expose a convenient high-level state interface, and are imple-
mented on top of FAASM’s low-level key/value state API. FAASM employs a two-tier state architecture
that combines local sharing with global distribution of state: a local tier provides shared in-memory
access to state on the same host; and a global tier allows FAASM to synchronise state across hosts.

5.5.1 High-level state abstraction

DDOs hide the two-tier state architecture, providing transparent access to distributed data. Func-
tions, however, can still access the state API directly, either to exercise more fine-grained control over
consistency and synchronisation, or to implement custom data structures. Each DDO represents a
single state value, referenced throughout the system using a string holding its respective state key.

FAASM writes changes from the local to the global tier by performing a push, and read from the
global to the local tier by performing a pull. DDOs may employ push and pull operations to produce
variable consistency, such as delaying updates in an eventually-consistent list or set, and may lazily
pull values only when they are accessed, such as in a distributed dictionary. Certain DDOs are
immutable, and hence avoid repeated synchronisation.

Listing 15 shows both implicit and explicit use of two-tier state through DDOs to implement
stochastic gradient descent (SGD) in Python. We use Python for the following examples, as it makes it
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Listing 15: Distributed SGD application with Faasm
1 t_a = SparseMatrixReadOnly("training_a")
2 t_b = MatrixReadOnly("training_b")
3 weights = VectorAsync("weights")
4

5 @faasm_func
6 def weight_update(idx_a, idx_b):
7 for col_idx, col_a in t_a.columns[idx_a:idx_b]:
8 col_b = t_b.columns[col_idx]
9 adj = calc_adjustment(col_a, col_b)

10 for val_idx, val in col_a.non_nulls():
11 weights[val_idx] += val * adj
12 if iter_count % threshold == 0:
13 weights.push()
14

15 @faasm_func
16 def sgd_main(n_workers, n_epochs):
17 for e in n_epochs:
18 args = divide_problem(n_workers)
19 c = chain(update, n_workers, args)
20 await_all(c)
21 ...

Ak
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Figure 9: FAASM two-tier state architecture

easiest to convey the business logic in the examples succinctly. The weight_update function accesses
two large input matrices through the SparseMatrixReadOnly and MatrixReadOnly DDOs (lines 1
and 2), and a single shared weights vector using VectorAsync (line 3). VectorAsync exposes a push()
function which is used to periodically push updates from the local tier to the global tier (line 13). The
calls to weight_update are chained in a loop in sgd_main (line 19).

Function weight_update accesses a randomly assigned subset of columns from the training ma-
trices using the columns property (lines 7 and 8). The DDO implicitly performs a pull operation to
ensure that data is present, and only replicates the necessary subsets of the state values in the local
tier—the entire matrix is not transferred unnecessarily.

Updates to the shared weights vector in the local tier are made in a loop in the weight_update
function (line 11). It invokes the push method on this vector (line 13) sporadically to update the
global tier. This improves performance and reduces network overhead, but introduces inconsistency
between the tiers. SGD tolerates such inconsistencies and it does not affect the overall result.

5.5.2 Two-tier state architecture

Faaslets represent state with a key/value abstraction, using unique state keys to reference state values.
The authoritative state value for each key is held in the global tier, which is backed by a distributed
key-value store (KVS) and accessible to all Faaslets in the cluster. Faaslets on a given host share a
local tier, containing replicas of each state value currently mapped to Faaslets on that host. The local
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tier is held exclusively in Faaslet shared memory regions, and Faaslets do not have a separate local
storage service, as in SAND [13] or Cloudburst [16].

Figure 9 shows the two-tier state architecture across two hosts. Faaslets on host 1 share state
value A; Faaslets on both hosts share state value B. Accordingly, there is a replica of state value A in
the local tier of host 1, and replicas of state value B in the local tier of both hosts.

The columns method of the SparseMatrixReadOnly and MatrixReadOnly DDOs in Listing 15 uses
state chunks to access a subset of a larger state value. As shown in Figure 9, state value C has state
chunks, which are treated as smaller independent state values. Faaslets create replicas of only the
required chunks in their local tier.
Ensuring local consistency. State value replicas in the local tier are created using Faaslet shared
memory. To ensure consistency between Faaslets accessing a replica, Faaslets acquire a local read lock
when reading, and a local write lock when writing. This locking happens implicitly as part of all state
API functions, but not when functions write directly to the local replica via a pointer. The state API
exposes the lock_state_read and lock_state_write functions that can be used to acquire local locks
explicitly, e.g. to implement a list that performs multiple writes to its state value when atomically
adding an element. A Faaslet creates a new local replica after a call to pull_state or get_state if it
does not already exist, and ensures consistency through a write lock.
Ensuring global consistency. DDOs support varying levels of consistency between the tiers as
shown by VectorAsync in Listing 15. To enforce strong consistency, DDOs must use global read/write
locks, which can be acquired and released for state keys using the functions lock_state_global_read
and lock_state_global_write, respectively. To perform a consistent write to the global tier, an ob-
ject acquires a global write lock, calls pull_state to update the local tier, applies its write to the local
tier, calls push_state to update the global tier, and releases the lock.

5.5.3 Experimental evaluation

To demonstrate the use of DDOs in an experiment, we implement the same distributed stochastic
gradient descent (SGD) algorithm as in Listing 15 in C/C++ to run text classification on the Reuters
RCV1 dataset [97]. This updates a central weights vector in parallel with batches of functions across
multiple epochs.

5.5.4 Experimental set-up

Serverless baseline. To benchmark FAASM against a state-of-the-art serverless platform, we use
Knative [98], a container-based system built on Kubernetes [99]. All experiments are implemented
using the same code for both FAASM and Knative, with a Knative-specific implementation of the
Faaslet host interface for container-based code. This interface uses the same undelrying state man-
agement code as FAASM, but cannot share the local tier between co-located functions. Knative func-
tion chaining is performed through the standard Knative API. Redis is used for the distributed KVS
and deployed to the same cluster.

FAASM integration. We integrate FAASM with Knative by running FAASM runtime instances as
Knative functions that are replicated using the default autoscaler. The system is otherwise unmodi-
fied, using the default endpoints and scheduler.

Testbed. Both FAASM and Knative applications are executed on the same Kubernetes cluster, run-
ning on 20 hosts, all Intel Xeon E3-1220 3.1 GHz machines with 16 GB of RAM, connected with a
1 Gbps connection.

Metrics. In addition to the usual evaluation metrics, such as execution time, throughput and la-
tency, we also consider billable memory, which quantifies memory consumption over time. It is the
product of the peak function memory multiplied by the number and runtime of functions, in units
of GB-seconds. It is used to attribute memory usage in many serverless platforms [36, 39, 41]. Note
that all memory measurements include the containers/Faaslets and their state.
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Figure 10: Machine learning training with SGD with FAASM and containers (Knative)

5.5.5 Experimental results

To test the scalability of the prototype we ran both Knative and FAASM with increasing numbers of
parallel functions.

Figure 10a shows the training time. FAASM exhibits a small improvement in runtime of 10%
compared to Knative at low parallelism and a 60% improvement with 15 parallel functions. With
more than 20 parallel Knative functions, the underlying hosts experience increased memory pressure
and they exhaust memory with over 30 functions. Training time continues to improve for FAASM up
to 38 parallel functions, at which point there is a more than an 80% improvement over 2 functions.

Figure 10b shows that, with increasing parallelism, the volume of network transfers increases in
both FAASM and Knative. Knative transfers more data to start with and the volume increase more
rapidly, with 145 GB transferred with 2 parallel functions and 280 GB transferred with 30 functions.
FAASM transfers 75 GB with 2 parallel functions and 100 GB with 38 parallel functions.

Figure 10c shows that billable memory in Knative increases with more parallelism: from approx.
1,000 GB-secs for 2 functions to over 5,000 GB-secs for 30 functions. The billable memory for FAASM

increases slowly from 350 GB-secs for 2 functions to 500 GB-secs with 38 functions.
The increased network transfer, memory usage and duration in Knative is caused primarily by

data shipping, e.g. loading data into containers. FAASM benefits from sharing data through its local
tier, hence amortises overheads and reduces latency. Further improvements in duration and network
overhead come from differences in the updates to the shared weights vector: in FAASM, the updates
from multiple functions are batched per host; whereas in Knative, each function must write directly to
external storage. Billable memory in Knative and FAASM increases with more parallelism, however,
the increased memory footprint and duration in Knative make this increase more pronounced.

5.6 Scheduling

The scheduling policy is crucial for having efficient state-sharing. Faaslets provide the sharing mech-
anisms to utilise the FAASM state efficiently but it is up to the scheduler to provide an efficient policy
to co-locate Faaslets running the same function. FAASM defines warm nodes as being hosts on which
the state on which an instance of the Faaslet Wasm module is already loaded. Each node is aware via
the global state of the list of warm nodes for a given user function and can offload work if necessary
when it reaches saturation. The FAASM scheduler is similar in this regard to a distributed shared state
scheduler such as Omega [100]. The metadata of the Faaslet runtime is serialised in a protocol buffer
message [101] sent between workers to instruct the welcoming host on which Faaslet it needs to run.

This scheduling policy is sufficiently simple and self-contained that FAASM can be executed us-
ing a number of disaggregated compute platforms. In CloudButton we use Knative as shown in
Figure 1. We integrate CloudButton with Knative by running FAASM runtime instances as Knative
functions that are replicated using the default autoscaler. The system is otherwise unmodified, us-
ing the default endpoints and scheduler. The default Knative scheduler passes functions to FAASM

runtime instances in a round-robin fashion, after which they will share work amongst themselves as
described above.

Page 34 of 62



H2020 825184 RIA
31/5/2022 CloudButton

6 FaasMP: Transparent use of OpenMP APIs with FAASM

OpenMP is a popular parallel programming API based on multi-threading and shared memory. It
is used in several domains including machine learning [102], linear algebra [103] and big data [30].
OpenMP encourages programmers to distribute code across threads, explicitly specifying which data
is shared and which data is unique to a given thread. Existing OpenMP implementations target a
single host, but the underlying concept of small, concurrent tasks lends itself well to a serverless
programming model.

6.1 Background: Open Multi-Processing (OpenMP)

OpenMP is an API in the form of compiler directives or pragmas and a runtime library to write cross-
platform multi-threaded programs for Fortran and C/C++ on shared-memory devices [104]. It is
supported by every major C/C++ compiler [105, 106] and, due to its popularity in the HPC commu-
nity, it is also implemented in multiple scientific compilers [107]. Its programming model follows the
fork/join model in which all threads share a common address space. Only the thread stack is private
to them along with explicitly marked private variables.

The initial root directive, namely #pragma omp parallel, is placed on top of a code block, to in-
dicate that this section should be run in parallel. Other directives can be used inside of this parallel
section to perform common parallel programming operations such as creating a critical section, wait-
ing for other threads, or distributing slices of an array to threads. At compile time, parallel sections
are extracted into functions, shared variables are made into stack variables, and the directives are
transformed by the compiler into calls to the compiler-specific runtime library that is responsible for
running the extracted functions in parallel. At runtime, the compiler-specific runtime library invokes
threading APIs to parallelise the code.

OpenMP is still under active development after more than two decades since its original release.
Recent versions focus on supporting GPUs [104]. OpenMP’s most notable peer in the HPC field is
MPI, which is the de-facto standard for distributed applications. The two APIs are complementary
and often used together, with OpenMP providing local parallelism, and MPI distributing tasks across
hosts [108]. Existing work has attempted to remove this dependence on MPI by both adding distri-
bution to OpenMP itself (Section 6.2), converting OpenMP to MPI [109], and offloading OpenMP to
the cloud [31].

6.1.1 OpenMP API

OpenMP is intuitive for a majority of programmers thanks to its shared-memory model that allows
for incremental addition of parallelism. Its paradigm is based on the fork/join model where a master
thread (with an id of 0) forks into slave threads (id > 0) that can run a code block marked with the
parallel pragma. Threads have access to common synchronisation mechanisms such as locks or
barriers. We describe those as core in Table 5, and we will use their descriptive names to refer to them
(e.g. critical or barrier). The rest of the API in the table can be divided into two categories: (1) the
task API which we will not implement because it is not widely used in practice even though it could
fit well into a serverless model by replacing glue code and ad-hoc await mechanisms; and (2) the
GPU API specifically for GPU-based processing.

The pragmas are accompanied by public library functions declared in omp.h to interact with the
OpenMP runtime for operations such as getting the thread number or setting the next number of
threads. Code examples can be found in the next section, which highlight the reasons why OpenMP
is so popular:

1. Most idiomatic OpenMP code still works when compiled with non-OpenMP compilers, which
means that programmers can often ignore the OpenMP semantics to understand an application.
This makes OpenMP simple.

2. The burden of using low-level platform-specific parallel APIs such as pthread and identifying
shared variables is put on the compiler. This makes the code portable.
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TYPE PRAGMA DESCRIPTION

Core

atomic Atomic access to memory location.

barrier Synchronisation of all threads in this region.

critical Next codeblock is a critical section.

flush Synchronise the view of the objects in memory.

for [simd] Distribute the for loop to the threads [with SIMD instructions].

master Next codeblock should only be executed by master thread.

parallel [reduce] Start of a parallel section [with a variable to accumulate at the end].

single Next codeblock should only be executed by one thread.

Tasks

task Define a task.

taskgroup Specifies which tasks to wait on.

taskloop [simd] Distribute the loop as tasks.

taskwait Wait for child tasks.

taskyield Suspend current task.

GPU target & distributed OpenMP 4.2 and above clauses for GPU control.

Table 5: Overview of main OpenMP pragmas

3. The runtime behaviour gives predictable performance [110]. Users who avoid expensive oper-
ations such as long critical sections, frequent forking and joining can expect linear performance
with respect to the number of cores.

6.1.2 Compiler code transformation

The compiler performs code transformations on the abstract syntax tree (AST) to convert the parsed
OpenMP code into regular C/C++ code that can be code generated. Listing 16 is a basic OpenMP
program that counts the number of threads that execute a parallel section marked with the directive
# pragma omp parallel and returns it.

We instruct the OpenMP compiler to interpret the OpenMP pragma by using the OpenMP flag:
clang -fopenmp count-unsafe.c. Intuitively, we can understand that the parallel section has been
given to a thread per core. The variable number_of_threads was shared automatically, such that
each thread could increment it. We show in Listing 17 what the compiler’s internal representation of

1 int main(void) {
2 int number_of_threads = 0;
3 # pragma omp parallel
4 {
5 number_of_threads += 1;
6 }
7 return number_of_threads;
8 }

Listing 16: Racy thread-count.c OpenMP example
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1 static void parallel_section(int *number_of_threads)
2 {
3 *number_of_threads++;
4 }
5

6 int main()
7 {
8 int number_of_threads = 0;
9 __kmpc_runtime_fork(parallel_section, &number_of_threads);

10 return number_of_threads;
11 }

Listing 17: Output of the compiler transformation (simplified)

the program looks like if we could convert it back into C++ after the compiler applied the OpenMP
transformations.

On lines 1 to 4 of this source code, the compiler extracts the parallel section into a new function,
called parallel_section. On line 9 in the main function, instead of calling the parallel_section
function directly, the compiler generates a call to the runtime library function __kmpc_runtime_fork,
passing the function parallel_section as an argument. On lines 8 and 9, the shared variable is
created on the stack and given by reference to the parallel section. The runtime library forking
function, called __kmpc_fork_call in Clang’s implementation [105], is responsible for running the
parallel_section function on each available OpenMP threads.

Compiling the same count-unsafe.c program (Listing 16) in a traditional manner with clang
count-unsafe.c, works and returns 1 because the OpenMP # pragma omp parallel compiler direc-
tive is ignored by the compiler unless OpenMP compilation is specified. This shows that OpenMP
can be a non-intrusive API.

Being based on the C/C++ languages, OpenMP programs offer little concurrency safety and can-
not check at compile time for unsafe memory operations. Our claim that OpenMP code can be en-
tirely transparent does not apply to runtime library functions calls, for example, that users must place
behind pre-processor #ifdef OpenMP blocks. Race conditions, deadlocks, and other concurrency-
related issues such as false sharing [111] may still happen when running an OpenMP program. The
concurrency of execution is not abstracted away for the programmer, only the platform-specific con-
structs.

In the initial program (Listing 16), no synchronisation mechanism was used for number_of_threads,
which means that our implementation was racy.6 Several low-level concurrency primitives are avail-
able for threads to synchronise (§6.1.1). Listing 18 shows (i) how the critical pragma can be used
to synchronise our program (line 9); (ii) how to control the visibility of variables explicitly with
default(none) and shared (line 7); and (iii) how the public library function omp_get_max_thread can
be used to obtain in advance the number of threads the next parallel section will run with (line 5).

6.1.3 Runtime library

Popular C/C++ compilers supporting OpenMP implement their own runtime libraries such as In-
tel’s compiler libiomp, the GNU C/C++ Compiler (GCC) with libgomp [106] or Clang/LLVM and
libomp [105]. Compilers have varying levels of support for OpenMP API, which has grown over
time. Unfortunately, LLVM’s library, already the most complex library because of its multi-platform
support, has been implementing undocumented ABI compatibility with libgomp, which we will need
to circumvent for our WebAssembly implementation.

6Technically, this is dependent on the platform that the program runs on (i.e. atomic increments). OpenMP shared-
variables are however not guaranteed to be synchronised. Threads have a local view of the shared-data that needs to be
flushed and/or synchronised to be valid.
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1 #include <assert.h>
2 #include <omp.h>
3

4 int main(void) {
5 int expected_num_threads = omp_get_max_threads();
6 int number_of_threads = 0;
7 # pragma omp parallel default(none) shared(number_of_threads)
8 {
9 # pragma omp critical

10 {
11 number_of_threads++;
12 }
13 }
14 assert(number_of_threads == expected_num_threads);
15 }

Listing 18: Complete thread-count.c

6.2 Related work on distributed OpenMP

Whilst it is possible to use MPI and OpenMP together for big data applications, it is not straight-
forward, with no support from the frameworks themselves. More crucially for this project, MPI
applications fundamentally embrace a serverful design (§2), trading off multi-tenancy and isolation
against performance. The main challenge for distributing OpenMP-only programs is that the API
and user applications are designed assuming the shared-memory access latency is similar to the
rest of the memory. We can distinguish three different approaches for distributed OpenMP that
tackle this challenge in different way: (i) by translating it to MPI; (ii) by using distributed shared
memory; and (iii) by offloading to big data platforms in the Cloud. All these approaches require
deployment in exclusive clusters and cannot scale based on the application’s demand.

6.2.1 OpenMP to MPI translation

This strategy first operates source-to-source translation from OpenMP to Single Program Multiple
Data (SPMD), the bases of MPI and generates collective communication code based on the semantic
of the translated OpenMP constructs [112, 109, 113]. This approach also requires a runtime system to
monitor, schedule and optimise communication between the threads and perform dynamic dataflow
analysis. For example, the runtime needs to manage a control flow graph for every array involved
in the global communication, or pre-fetch data when parallel sections are called in a loop and the
runtime can identify recurring patterns. The performance of these approaches thus relies mainly on
their runtime and does not scale past 100 threads.

6.2.2 OpenMP on software distributed shared memory

This approach is the most popular because page-based distributed shared memory (DSM) can sup-
port existing code with little modification and so was released in a commercial compiler, Intel Cluster
OpenMP [114], that provided support for compiling OpenMP applications to run on small clusters.
OpenMP allows most of the program’s execution to be consistent only around the synchronisation
points thereby allowing distributed processes to operate on their local DSM pages efficiently. More-
over, we can expect users to optimise for page locality, which is an optimisation pattern for page-
based DSM. We detail below the details of the two main systems and our takeaways from the litera-
ture for this project.

Intel Cluster OpenMP. Cluster OpenMP (ClOMP) [114] was released in 2006 as part of the Intel
C/C++ and Fortran compiler. The only porting step required by the Intel compiler was data privati-
sation and marking certain variables explicitly sharable for the DSM. However, ClOMP showed bad
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performance on fine-grained data distribution, especially through ethernet, and was outperformed
or equalled by MPI on existing applications [115]. The DSM layer was more suited for procedural
Fortran than for C/C++ pointers logic and as such showed poor performance for common program-
ming patterns like C++ STL algorithms. The minimal overheads measured in micro-benchmarks for
a distributed reduce was three orders of magnitude slower than local memory [115], but those figures
could be amortised for large parallel sections.

libMPNode. libMPNode is a modification of the Linux target only GNU libgomp that run on Pop-
corn Linux which provides thread migration and multiple reader/single writer protocol for paged-
granularity DSM in a cluster. Threads are assigned to nodes using a new node keyword thus hin-
dering the programs portability and not offering support for unmodified applications. They further
need to optimise their algorithms based on the underlying DSM page size to minimise co-location.

Thanks to the fixed thread placement, it implements some OpenMP directives in a way that re-
quires a minimal number of open network communication (one per node, instead of one per thread),
which allows for good scaling across nodes after fine-tuning the code for distribution. Other issues
include a lack of multi-tenant isolation, and an excessive resource footprint, notably from the distri-
bution layer.

Summary of DSM-based OpenMP. libMPNode needs to prevent DSM page thrashing that occurs
when multiple nodes are trying to fetch the same remote page (but not necessarily the same data)
by placing contention element on separate pages. FAASM’s FDiffs operate at a byte-level granularity
rather than a page-level granularity, hence do not face this problem.

libMPNode makes the remark that OpenMP allows for threads to have a local view of the data
until it is explicitly flushed or reaches a synchronisation point, but that their DSM enforces sequential
consistency for every page access. They suggested they could improve their performance if their
DSM could differentiate between the two sorts of accesses. We incorporate this into our concurrency
and synchronisation primitive’s design.

With ClOMP, the failure of one process terminates the whole program, monitored through heart-
beats, and the failure mode of libMPNode is assumed to be similar. OpenMP is not originally designed
for fault-tolerance, and general distributed fault-tolerance is not achievable for existing programs but
a subset of the API can be made fault-tolerant in a serverless environment.

Results from the DSM approaches showed that OpenMP program scalability does not imply
page-based DSM scalability [115].

6.2.3 Offloading to the cloud

The recent addition of target devices to OpenMP has led to the idea of using the OpenMP API as
a Spark client [116] for Map-Reduce jobs [31]. This can be used in applications like edge-compute
for mobile devices [117]. This approach tries to democratise the utilisation of the cloud by re-using
a known C/C++ API, but falls short in terms of generalisability, fine-grained scalability, or useful
applications hindsight.

Our key design idea on how to achieve our goal of making OpenMP serverless is to implement
a new OpenMP runtime library. Our library, FaasMP, replaces the runtime library of the compiler
such as libomp, libiomp or libgomp, which is in charge of the threading specifics of the platform.

6.3 Requirements for shared memory multi-processing

In this section, we explain in a practical fashion what concepts an existing, efficient, implementation
of an OpenMP runtime library is based on. We start by looking at the open-source code of libomp,
the LLVM runtime library [118]. Note that libomp is a large and complex codebase, which supports
both UNIX and Windows platforms. It will be important to study the LLVM codebase, notably for
understanding its private API.

Next, we use small OpenMP code examples and strace—a Linux utility to trace system calls [119]—
with a filter to only show activity from libomp. Table 6 shows the observed system calls and groups
them into categories. The system calls are ticked if there is a reasonable equivalent implementation
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Category Description POSIX System call Wasm Serverless

Memory Grown/Shrink heap
mmap/munmap 3 3

brk/sbrk 3 3

Forking
Create thread clone 3 3∗

Shared-memory mprotect 3 3∗

Scheduling
Cede CPU sched_yield 3 ∼
Pin thread to CPU core sched_[get|set]affinity 3 7

Signals
Set signal handler rt_sigaction 7 ?∗∗

Set allowed signals rt_sigprocmask 7 ?∗∗

Synchronisation
Fast user-space locking futex 3 7

Auto-lock release [get|set]_robust_list 3 ?∗∗

*: Never done together; **: Further semantics ramifications

Table 6: WebAssembly and serverless compatibility for libomp system calls

in WebAssembly and if there exists or could exist a serverless implementation of the system call.
WebAssembly can support most of the required operations, but many operations in serverless are
rendered difficult, notably because of the distribution of the functions onto inhomogeneous domains.
We now explain each category in more detail.

(a) Memory. Local memory management is already supported transparently in stateful serverless
environments [26, 27] but FAASM additionally supports local shared-memory between Faaslets.

(b) Forking. The other categories of the table all depend on the chosen implementation of clone,
which is called with the CLONE_THREAD flag: it does not fork the process but creates a thread in
the same address space [84]. Although with Crucial [27] (see §4), we also explore the use of AWS
Lambda [60] as a “cloud thread” executor, the lack of shared memory in such cases is an issue when
providing efficient threads.

Conversely, Faaslets [26] are capable of sharing memory, not through a forking interface but
through calls to mmap using the MAP_SHARED parameter. This differs from a POSIX thread that shares
the entire process memory. Faaslets share only discrete memory regions in the WebAssembly mem-
ory through the FAASM state API because the general process memory needs to be isolated. We ex-
plore extending this behaviour to allow for thread forking using the WebAssembly threading mech-
anism proposal implemented in WAVM and use Faaslets as thread executors.

(c) Scheduling. Yielding the CPU can be done in WebAssembly and in serverless computing in
general. In distributed systems with weak scheduling guarantees, however, it may not be possible
to yield to a specific thread, which is a useful mechanism in cooperative multitasking and even a
necessity to implement high-performance synchronisation constructs.

Similarly, the CPU affinity system calls to pin a thread or a process to a CPU core could be
allowed in Wasm but is difficult to implement in a multi-tenant serverless environment and seem to
go against the principles of elasticity of the compute layer. We can further infer that if libomp needs
to pin threads and become cache-conscious, it relies on a predictable memory model, preferably
homogenous across threads. This could also be evidence of thread pooling by libomp.

(d) Signals. Signals are a POSIX form of inter-process communication (IPC), which, if integrated
into a serverless platform, may help solve a commonly raised FaaS issue: the lack of effective direct
communication between functions. There are, however, concerns about such support in the FAASM
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host interface:

1. How to support signals in a WASI-based host interface, when WebAssembly does not have
processes and thus does not support signals?

2. How to implement efficient and/or fault-tolerant distributed signalling?

Signals are often used for performing asynchronous I/O, but FAASM proposes other, more id-
iomatic, ways of doing asynchronous I/O, by spawning a Faaslet to handle an I/O request for exam-
ple. Both FAASM and OpenMP encourage the use of shared memory as the preferred communication
mechanism, and therefore supporting POSIX signals would not provide any benefits for supporting
existing OpenMP programs.

(e) Synchronisation. Synchronisation and consistency mechanisms are perhaps the most difficult
mechanisms to integrate into a distributed serverless environment. For example, a futex is a mech-
anism for fast userspace locking, and threads can have a robust_list of futexes that they hold and
that should be automatically released if the thread terminates without explicitly releasing them [84].
The futex interface has strong performance guarantees, and the robust_list has strong safety guar-
antees. The CAP theorem [62] can immediately instruct us of the difficulties arising when designing
a distributed system trying to deliver these guarantees. Moreover, depending on the implementa-
tion of those mechanisms, user applications may be exposed to new classes of issues (e.g. distributed
deadlocks, starvation, and thrashing) that programs were not designed for.

6.4 FaasMP Design

Summarising the previous sections, to execute multi-threaded applications correctly with shared
memory, FAASM must provide consistency guarantees across hosts, alongside suitable synchroni-
sation primitives such as locks and barriers. FAASM makes distributed shared memory consistent by
sending FDiffs between hosts that communicate updates to the shared address space (Section 6.4.1).

OpenMP uses reductions to aggregate parallel updates to shared variables without the coordina-
tion overhead of mutexes. FAASM supports reductions using merge operations, which allow it to com-
bine multiple FDiffs to the same memory region using arithmetic operations (Section 6.4.2). Finally,
FAASM provides custom implementations of coordination primitives including mutexes, barriers and
latches (Section 6.4.3).

6.4.1 Synchronising changes to shared memory

By default, OpenMP assumes only weak consistency guarantees on the memory shared between
threads; stronger consistency is requested explicitly through synchronisation primitives. Assuming
code is free from data races, FAASM must correctly execute multi-threaded applications: it must
ensures that writes to shared memory from a child thread are visible to the parent thread when it
joins that child. Changes must be visible to all threads when entering a critical section, or exiting an
explicit or implicit barrier.

When FAASM needs to execute a child thread, it creates a new Faaslet from a snapshot of the
main Faaslet. This snapshot is maintained until all child threads have finished execution, and acts as
the master snapshot for the shared address space. FAASM synchronises all subsequent changes across
distributed Faaslets via this master snapshot: it receives updates to it from remote hosts, and uses it
to calculate updates to send to remote hosts.

A Faaslet maps its linear memory from the master snapshot, if executing on the main host, or a
replica of the master snapshot, if executing on a worker host. The Faaslet then tracks the changes
made to the shared address space by application code. FAASM write-protects all memory pages of
the Faaslet’s linear memory using mprotect() and handles the page faults caused by application code
by marking the page dirty and resetting its read/write permissions.

To send these changes back to the main host when the Faaslet completes or reaches a barrier,
the Faaslet performs a byte-wise comparison of the modified pages with its local copy of the master
snapshot. This results in a list of FDiffs that specify the offset at which the changes occurred and the
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modified bytes. The main host receives these FDiffs from worker hosts and uses them to update the
master snapshot.

The FAASM runtime must update the master snapshot replicas on remote hosts, e.g. when exiting
a barrier. It transmits only the FDiffs required to update the remote replicas, and not the whole
snapshot. To enable this, the FAASM runtime on the main host keeps track of which bytes have been
updated by incoming FDiffs, then sends a new set of FDiffs with these changes to the worker hosts.

int* w = init();
#pragma omp parallel  
{ 

 updateWeights(i, w); 
 #pragma omp barrier

 applyWeights(i, w);

} 

finaliseWeights(w); 

F1

S F3F2 Push snapshot S to Sc
2. Restore F2,3 from Sc 

Execute F1,2,3
3. At barrier, update S/Sc
4. Remap F1,2,3

1. F1 at parallel section

Execute F1,2,3
5. F2,3 finish, update S 

Remap F1

Execute F1

Main Worker

Sc

1

2

3
4

5

Figure 11: Synchronisation of a shared address space. Distributed Faaslets execute an OpenMP
parallel section with a barrier.

Fig. 11 gives an example of shared memory synchronisation, which shows how FAASM executes
an excerpt of OpenMP code using 3 Faaslets across 2 hosts. 1 When the main Faaslet enters an
OpenMP parallel section, it triggers a control point at which FAASM creates the master snapshot of
the shared address space from the main Faaslet. 2 FAASM then creates 2 more Faaslets from a replica
of this main snapshot on the worker host, and each Faaslet executes the body of the parallel section.
3 When all Faaslets have reached the barrier, each creates a list of FDiffs that the FAASM runtime on
the main host uses to update the master snapshot. 4 On exiting the barrier, the main hosts’s FAASM

runtime sends another list of FDiffs to update the snapshot replica on the worker host. All Faaslets
then remap their own linear memory to the local copy of the snapshot and continue execution. 5 At
the end of the parallel section, the parent Faaslet joins the child Faaslets, and again FAASM uses the
FDiffs from each Faaslet to update the main snapshot. Finally, the main Faaslet remaps its memory
from the snapshot.

6.4.2 Supporting reductions on shared variables

OpenMP allows multiple threads to aggregate changes to shared variables using reductions. A reduc-
tion aggregates the changes made by threads without the coordination overhead of protecting these
updates with mutexes. FAASM supports reductions through merge operations, which allow FAASM to
combine multiple FDiffs on a single shared variable.

Figure 12 shows OpenMP code for a parallel section that performs disjoint updates to a shared
vector and a reduction section that performs a summation on a shared variable. FAASM spawns
3 child Faaslets when the main Faaslet reaches the parallel section, creating the main snapshot on the
main host and a replica on the worker host. Each Faaslet maps its linear memory from its local copy
of the snapshot.

In the first parallel section, each Faaslet updates its value in the w vector. The resulting FDiffs can
be written directly to the main snapshot without a merge operation. In the reduction section, each
thread updates their local copy of the variable x, generating a FDiff on the same memory region. Since
the reduction specifies a summation over x, FAASM combines these FDiffs in the master snapshot
using a sum.

Tab. 7 lists the merge operations supported by FAASM. They include simple arithmetic operations
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of summation, subtraction, multiplication and division, as commonly found in parallel reductions.
The operations involve four values: A0, the starting value in the main snapshot; B0, the value held in
the copy of the snapshot on the remote host; B1, the updated value after the thread has executed on
the remote host; and A1, the value written to the main snapshot by the operation.

int n = get_max_num_threads() 
int[] w = initWeights(n); 

#pragma omp parallel {
  int t = omp_get_thread_num(); 
  w[t] = updateWeight(w, t, n); 
} 

applyWeights(w);
int x = 0;

#pragma omp for reduction(+:x) {
for(int i=0; i<n; i++) {
  x += w[i] > threshold ? 1 : 0;
} 

F1
Main Worker

F2 F3 F4S

F7F6F5

S

Figure 12: Reductions in OpenMP. Faaslets on 2 hosts make non-conflicting updates in a parallel
section, and perform a reduction.

Merge operation Formula Data types

sum A1 = A0 + (B1 − B0) All numeric
subtract A1 = A0 − (B0 − B1) All numeric
multiply A1 = A0 ∗ (B1 / B0) All numeric
divide A1 = A0 / (B0 / B1) All numeric
overwrite A1 = B1 Arbitrary bytes

Table 7: Merge operations supported by FAASM. FAASM overwrites the original value A0 in the
master snapshot with value A1. B0 is the value seen in the snapshot on the remote host before the
Faaslet executed, and B1 is the value after execution.

6.4.3 Synchronisation primitives

In addition to providing consistent shared memory and reduction operations, FAASM must support
the synchronisation primitives in multi-threaded code that control concurrent access to shared data.
FAASM offers the following primitives:

Mutexes. A mutex guarantees that only one thread can access data at a given time. In FAASM,
application code that acquires a mutex triggers a control point, and the associated Faaslet requests a
lock on the mutex from the FAASM runtime on the main host. When locking the mutex, the FAASM

runtime returns the FDiffs to update that Faaslet’s local copy of the shared memory snapshot. This
way, the thread holding the mutex is guaranteed to observe the updates of other threads that have
also held it; when releasing the mutex, the Faaslet returns its own set of FDiffs to the FAASM runtime.

Atomic operations. Atomic arithmetic operations do not guarantee consistency, only atomicity. To
perform such operations, each Faaslet acquires a host-local mutex to avoid data races on the local
copy of the shared memory. FAASM then uses a merge operation corresponding to the arithmetic
operation to merge the resulting FDiffs across hosts.

Barriers. A barrier is either implicit or explicit: an implicit barrier is introduced by a parallel
section; an explicit barrier is added manually. Barriers require that all threads block until they have
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Figure 13: Dense matrix multiplication

0 5 10 15 20 25 30 35 40
# threads

0

50

Ti
m

e 
(s

) FaasMP
OpenMP

Figure 14: Lulesh simulation

Figure 15: Scalability in big data setting using multi-threading and shared memory with increasing
numbers of threads (Dotted vertical lines indicate boundaries at which the application is distributed
across more cloud workers.)

completed the barrier. Afterwards, all threads must observe a consistent view of the shared memory.
On entering a barrier, Faaslets send their FDiffs to the main host and block. After all threads have
completed, the main host sends the aggregated FDiffs to all Faaslets, which unblock.

Latches. A latch allows threads to decrement a counter and/or wait for it to reach zero. Latches are
used implicitly in nowait OpenMP operations: the main thread blocks until all child threads have
reached the latch. Faaslets on remote hosts can make non-blocking requests to the master host to
decrement a latch, or blocking requests to wait for the latch to reach zero.

6.5 Experimental evaluation

This experiment explores the scalability of FaasMP in the context of a data-intensive (“big data”) sci-
entific workload. Our goal is to validate our CloudButton KPIs in terms of the scalability achieved.
We measure the performance when using FAASM’s shared memory synchronisation and the dis-
tributed coordination primitives, as implemented by FaasMP.

We run two multi-threaded data-intensive applications using OpenMP: a dense parallel matrix
multiplication from the ParResKernels benchmarks [120], and Lulesh [121], a big data hydrodynam-
ics simulation application. Note that matrix multiplication is computationally intensive but makes
comparatively light use of FaasMP’s shared memory synchronisation and coordination primitives.

The Lulesh [121] workload solves a Sedov blast problem to simulate a material undergoing the
forces from a shock [122]. The workload uses OpenMP to divide the large-scale simulation into a
series of iterations over a cube of fluid subdivided into a 3D mesh. Each iteration is parallelised over
a fixed number of threads, synchronising changes to a shared model at the end of the iteration, thus
stressing FAASM’s shared memory synchronisation, and its distributed coordination primitives. To
investigate scalability, we execute the workload using increasing numbers of threads, (i) natively on
a single machine and (ii) a distributed FAASM cluster deployed on top of Knative.

Figure 15 shows the measured execution times of both applications running with an increas-
ing number of threads in FAASM and native OpenMP. Native OpenMP applications cannot be dis-
tributed, hence we only measure each OpenMP execution up to a number of threads equal to the
CPU cores available on a single host.

For matrix multiplication, FAASM adds a constant overhead of 30% on a single host, due to the
overhead of performing floating-point arithmetic in WebAssembly [123]. However, the overhead
for Lulesh on a single host becomes progressively worse as we add more threads, due to the cost
of making system calls through the Faaslet interface, and the contention arising from synchronising
internal Faaslet state.

To scale beyond the parallelism available on a single host, FAASM adds remote threads on other
hosts. The first three threads added in this manner do not improve upon the single host matrix mul-
tiplication performance, as the cost of cross-host synchronisation outweighs the benefits of increased

Page 44 of 62



H2020 825184 RIA
31/5/2022 CloudButton

parallelism. As FAASM adds more remote threads, we see a 5% improvement in the performance of
the single host version. Once FAASM scales Lulesh across more than one host, we see an order of
magnitude increase in overhead versus the best single-host performance, which increases steadily as
it introduces more remote threads. This increasing overhead is due to the increasing levels of cross-
host communication involved in coordination and shared memory synchronisation, and we further
analyse it below.

FAASM’s performance overhead for the Lulesh experiment is high. It is partly down to some char-
acteristics of the specific workload, and partly down to implementation issues that can be improved
upon. The workload is divided into short-lived parallel sections separated by barriers, hence coordi-
nation overheads outweigh the benefit of distribution. Each Faaslet executes for less than 1 ms, after
which it must wait for the slowest straggler to complete and synchronise its FDiffs with the main
host. The implementation offers the following opportunities for improvement: (i) each Faaslet tracks
changes to the shared address space using write-protected pages and signal handling, this can be
done more efficiently with recent Linux kernels and userfaultfd [124]; (ii) each Faaslet copies each
FDiff before sending, which can be avoided by making the transport layer zero-copy; and (iii) the
FAASM runtime exhibits high levels of contention on a single host, which can be mitigated with more
efficient shared data structures and locks.

Page 45 of 62



H2020 825184 RIA
31/5/2022 CloudButton

7 FaasMPI: Bridging the gap between HPC and cloud

The two worlds of High-Performance Computing (HPC) and Cloud Computing have traditionally
shown little overlap, each having their own disjoint sets of popular languages and frameworks. HPC
is primarily focused on performance and fine-grained control of underlying resources, while the
Cloud targets ease of use and hides underlying hardware from users.

Accordingly, Fortran and C/C++ are the most popular HPC languages [29], and HPC frame-
works like MPI and OpenMP expose users to hardware-specific features such as SIMD instructions
and GPU offloading [104]. Newer HPC languages such as Chapel [125] and Charm++ [126] intro-
duce high-level programming constructs, with NumPy-like arrays implemented with Chapel in Ark-
ouda [127]. However, these are yet to see wide adoption outside the HPC community. In contrast,
frameworks commonly used in Cloud environments like Spark [128] and Flink [129] offer high-level
APIs [1] in dynamic languages such as Python. Serverless providers most commonly target Python
and Javascript support [60, 39, 40], with little or no support for popular HPC languages and frame-
works.

One of the stated goals of CloudButton is to bridge this gap by transparently executing HPC
applications on serverless infrastructure, thus providing low cost, flexible scaling, without losing the
expressivity and control of traditional HPC frameworks. We do this with FaasMPI, native support
for MPI built into FAASM.

7.1 Motivating serverless MPI

MPI is a widely used standard for writing distributed applications, and while it is still most com-
monly employed in high-performance computing (HPC), it also crosses the divide into non-HPC
frameworks. MPI support is found in machine learning frameworks like Horovod [32] and Mi-
crosoft’s CNTK [130] and Alchemist [131] demonstrates an MPI backend for Spark.

MPI supports point-to-point and collective communication, both synchronously and asynchronously,
and users express applications as a set of distributed workers sharing immutable messages. This
fits well with the serverless paradigm for three reasons: (i) MPI applications are already struc-
tured around large numbers of small distributed tasks; (ii) message-passing can be efficiently imple-
mented using existing serverless storage mechanisms; (iii) tasks address each other through numeric
“ranks", so are independent of the underlying networking and communication layer. Actor-based
programming is similarly well suited to serverless for the same reasons, and has been explored in
PLASMA [9]. However, the breadth and volume of existing MPI codebases dwarfs that of actor-
based applications, so it is a more compelling option given the aims of CloudButton. With serverless
MPI we can support a wide variety of existing use-cases in big data, machine learning, fluid dynam-
ics, genomics, astrophysics and other scientific applications [132].

7.2 FaasMPI’s integration in Faasm

MPI 1.0 was released in 1994 and has been developed and augmented ever since. Although more
recent developments have added advanced, useful features, it is the basic point-to-point messaging
and collective communication from earlier MPI releases that underpins the majority of open-source
MPI code today [29]. For this reason, FaasMPI targets only this core functionality, namely: (i) syn-
chronous and asynchronous point-to-point messaging; (ii) broadcast and all-to-all; (iii) scatter, gather
and all-gather; (iv) reduce and all-reduce. FAASM also supports custom types and custom reductions.
A full list of the MPI functions supported by FaasMPI is given in Table 8.

MPI applications normally execute in a static environment on a set of hosts provisioned ahead of
time. In contrast, FAASM and other serverless platforms aim to scale up and down to meet a user’s
need. To address this disconnect, FAASM lets users specify the level of parallelism they require for
their MPI application on a per request basis. This means that users can execute the same application
at different scales without changing any configuration or redeploying the code.

Users can compile MPI applications using the standard FAASM toolchain, which is based on
LLVM tools such as Clang [133]. As with all FAASM functions, the output of this compilation is a
WebAssembly file that can be uploaded and invoked on a FAASM cluster.
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MPI Category Function Action

Environment MPI_Init() Ensure all functions initialised
MPI_Comm_size() Number of functions in communicator.
MPI_World_size() Number of functions in world.
MPI_Finalize() Finish MPI operations.
MPI_Abort() Exit MPI application.

Point-to-point MPI_Send() Send message to function (sync).
MPI_Isend() Send message to function (async).
MPI_Recv() Receive message from function (sync).
MPI_Irecv() Receive message function (async).
MPI_Probe() Get information on incoming message.
MPI_Wait() Wait for async operation.

Collective MPI_Bcast() Broadcast to all other functions.
MPI_Alltoall() Send all-to-all message.
MPI_Barrier() Wait for all functions to reach barrier.
MPI_Scatter() Divide array across all functions.
MPI_Gather() Receive from all functions into array.
MPI_Allgather() All-to-all version of MPI_Gather.
MPI_Reduce() Reduce data from all other functions.
MPI_Allreduce() All-to-all version of MPI_Reduce.

Table 8: MPI functions supported in FaasMPI

FAASM itself is built on Faaslets, a lightweight isolation mechanism which uses WebAssembly
for memory safety [33]. Faaslets allow functions to interact with the underlying host through a
specialised Host Interface, which supports standard POSIX-like calls for memory management, file
I/O and networking, as well as serverless-specific calls for sharing state and interacting with other
functions. MPI is implemented as an extension of this Host Interface, with calls incurring the same
minimal overheads as the other functions in the interface.

7.3 FaasMPI design

To support MPI-like message passing in FAASM, FaasMPI provides each Faaslet with a virtual address
for asynchronous messaging, and groups Faaslets into FGroups (Section 7.3.1). Network bandwidth
is the bottleneck for most message-passing applications, and FaasMPI implements two mechanisms
to mitigate these overheads. First, Faaslets can be migrated mid-execution to improve locality (Sec-
tion 7.3.2). Second, FaasMPI provides locality-aware implementations of MPI’s collective communi-
cation API to minimise the number of cross-host messages (Section 7.3.3).

7.3.1 Virtual addressing for Faaslets and FGroups

Each Faaslet that executes a process in a multi-process/message-passing (i.e. MPI) must be able to
message any other Faaslet. To support this message passing, FaasMPI associates Faaslets with long-
lived virtual address for communication. In addition, FaasMPI organises Faaslets into FGroups. The
virtual address for a Faaslet is then the group id together with a logical index inside the group. Us-
ing this virtual address, Faaslets can then asynchronously send and receive messages to and from
other Faaslets in the group by referring to that index. To accomodate to the asynchronous nature of
a serverless environment, where there may exist delays between the scheduling of different Faaslets,
or Faaslets may be migrated mid-execution, FaasMPI implements the transport layer in an asyn-
chronous fashion: sending messages do not block the sender Faaslet, and the receiver Faaslet receives
the message whenever it is available.
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Figure 16: FaasMPI message passing architecture. FAASM runtime instances act as either the main
host or worker host for each application. They add, remove and migrate Faaslets, and asynchronously
pass messages between Faaslets.

By default, all Faaslets that execute an application are in the same FGroup. FaasMPI may create
new FGroups on MPI calls like MPI_Comm_create(), which allows the application to control commu-
nication groups. A FGroup assigns each Faaslet an index, which, as introduced before, FaasMPI uses
as an address for that function in its implementation of message passing APIs. Each FAASM runtime
that executes a Faaslet holds a replica of the FGroup metadata with a host table, which maps the in-
dexes of Faaslets in the FGroup to the host on which they have been scheduled. For each Faaslet of
the group executed on a host, the FAASM runtime has a set of queues to buffer messages sent to that
index, one queue for each other Faaslet in the group, these are called inboxes.

When a Faaslet reaches a function that requires sending a message, e.g. MPI_Send(), the FaasMPI
implementation of the FAASM runtime in the host of the sending Faaslet looks up the recipient index
in the host table for that group. If the recipient is on the same host, FAASM directly enqueues the mes-
sage on the relevant in-memory queue. This results in low-latency intra-host messaging compared
to using the local loopback network interface or inter-process communication (IPC). If the recipient
is on another host, FAASM sends the message to the runtime on that host, where it is enqueued.

Figure 16 shows an overview of two applications distributed across two hosts, and a representa-
tion of the internal state of their respective FGroups. The first application (green) is running in two
Faaslets on Host A, and one Faaslet on Host B, while the second application (red) is running in two
Faaslets on each host. Each Faaslet in the first application has two inboxes, as there are two other
Faaslets from which it may receive messages, and each Faaslet in the second application has three
inboxes, as there are three Faaslets from which it may receive messages. The host tables for each ap-
plication are replicated across both hosts, and record which Faaslets for each application are executing
on which host.

7.3.2 Migrating Faaslets

To reduce the effect of network overheads when executing an MPI application using FaasMPI on
FAASM, it is desirable to minimise the number of cross-host messages sent. To that extent, the FAASM

runtime can decide to migrate Faaslets running MPI code to co-locate MPI functions. Migration de-
cisions are determined by a scheduling policy, and are a consequence of the multi-tenant nature of
FAASM: when the MPI application is first scheduled, Faaslets are scattered across available hosts;
after other applications finish, FAASM may be able to group some of the scattered Faaslets.
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Figure 17: Faaslet migration at MPI_Barrier.

To simplify the migration process, Faaslet migration may only be carried out at special MPI barrier
calls like MPI_Barrier or MPI_Allreduce. These are special MPI calls that block all Faaslets of an
application. Figure 17 illustrates Faaslet migration. When Faaslets reach one of these barrier calls, they
wait for a notification from the application’s main host. When the main Faaslet reaches the barrier on
the main host, it queries the scheduler for migration decisions. The scheduler, periodically and in the
background, applies its scheduling policy and decides on function migrations if the current function
execution deviates from the desired allocation. It then sends messages to all FAASM runtimes on
the hosts involved in the migrations. To migrate a function, the involved FAASM runtimes reserve
the necessary resources for the Faaslets. If the resources have become unavailable, the migration is
aborted. After that, the Faaslets to be migrated perform the migration and notify the main host. Once
the main host has received notifications from all migrated Faaslets, it allows the Faaslets to exit the
barrier point.
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Figure 18: Preserving a FGroup while migrating. One function from the FGroup is migrated from a
worker host to the main host, and FAASM updates the host-local metadata and queues.

When migrating Faaslets across hosts, the FAASM runtime must also update the metadata and
queues associated with FGroups to which the migrating Faaslets belong. Figure 18 shows how FAASM

updates a FGroup during migration. Initially, the main host executes one Faaslet from the group
alongside a Faaslet from another application; the worker host executes two other Faaslets from the
group. When the Faaslet from the other application completes, it frees up resources on the main host;
when the Faaslets reaches a barrier call, FAASM migrates one of the functions from the worker host to
the main host. Before completing the migration, each FAASM runtime updates its address table and
creates or deletes queues to accommodate the new or departing Faaslet, respectively.
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MPI_Init();
int[] w= initWeights();
for(int i=0; i<steps; i++) {
  updateWeights(w, r, n);
  MPI_Allreduce(w, n);

  if(rank == 0)
    applyWeights(w);
}
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3. AllReduce share

4. All FThreads continue

F5 F6 1

2

3

4

Figure 19: MPI collective communication. A host-leader on each host sends/receives intra-host mes-
sages (blue) and sends/receives cross-host message (red) to/from other host-leaders.

7.3.3 Optimising collective communications

In addition to simple point-to-point messaging, many message MPI make use of collective communi-
cation operations, such as all-reduce and broadcast. These operations are widely used in distributed
ML training through specialised libraries [134, 135, 136]. FAASM supports several of these operations
(see Table 8), and implements them in a FGroup-aware manner. This is, the implementation min-
imises latency (i.e. number of cross-host messages) by exploiting knowledge of Faaslet placement to
maximise intra-host messaging.

Figure 19 shows the underlying message passing performed by FaasMPI when application code
makes a call to MPI_Allreduce(). 1 When FAASM creates an FGroup, it selects one Faaslet on each
host to be the host-leader for that host. Any messages that need to be sent to Faaslets on other hosts are
sent by all Faaslets to their host-leader, which batches the messages into single cross-host requests.
All-reduce takes place in two steps: 2 an initial reduce in which results from all Faaslets on each host
are sent to the main host via their host-leader; and 3 a broadcast of the final result to all Faaslets,
which is delivered via their host-leader.

FAASM’s implementation of collective communication operations reduces the cross-host mes-
sages to one per remote host involved in each step. It then uses fast in-memory queues for the Faaslet
to host-leader communication. This approach reduces latency (Figure 7.4.1) and bandwidth usage,
and enables pipelining: after a Faaslet has asynchronously messaged its local leader, it can continue
execution.

7.4 Experimental evaluation

To evaluate if FaasMPI achieves CloudButton’s scalability KPIs, we compare FaasMPI against scien-
tific applications written in OpenMPI [137], one of the most popular open-source OpenMPI frame-
works, and the same code cross-compiled (lift-and-shift) to run on FAASM.

We pick two data- and compute-intensive scientific applications: the ParRes Kernels [120] and
LAMMPS [138, 139]. The ParResKernels are a collection of compute kernels that can be used to
compare parallel programming frameworks. Each kernel reproduces a common parallel application
pattern and runs it in a loop. For example, kernels reproduce behaviours like a sparse matrix multi-
plication, large matrix transpose, or collective communication patterns like broadcast and all-reduce.
LAMMPS is a popular molecular dynamics simulator written in C++ and MPI. It can run a variety of
large-scale simulations and benchmarks.

We deploy FaasMPI and OpenMPI on a Kubernetes cluster [99] on Microsoft Azure [140]. For the
native deployment (OpenMPI), we package the OpenMPI code and runtime on a Docker image and
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Figure 20: Scalability for MPI kernels from ParResKernels [120] (This compares FaasMPI to native
OpenMPI.)

deploy it in a static cluster using a ReplicaSet. We deploy FaasMPI as a serverless service on top of
Knative [141].

7.4.1 ParRes kernels

This experiment explores the base performance overhead introduced when executing kernels from
the ParRes Kernels benchmarking suite [120]. As the suite isolates particular aspects of parallel and
message passing communications, results can be interpreted as base overheads for FaasMPI’s MPI’s
implementation.

For this experiment, we use FAASM to deploy 4 kernels with increasing levels of parallelism on
4 hosts, and measure the performance of FaasMPI compared to running natively with OpenMPI.

Figure 20 shows that the average slowdown is between 0.6–1.25× compared to native, i.e. FaasMPI
runs equally (if not) faster across different kernels, degrees of parallelism, and distributions from 1 to
4 hosts. FaasMPI uses shared memory (same process) for inter-rank communication whereas Open-
MPI uses IPC. As a consequence, kernels benefit from faster intra-host messaging in FaasMPI. Fur-
thermore, the implementation of FaasMPI’s collective communication primitives, e.g. MPI_Reduce(),
reduces inter-host messages, exploiting the faster local messaging path (Section 7.3.3). However, the
cross-host network layer in CloudButton must support concurrent applications from different users,
this adds an overhead to distribution for some kernels (Section 7.3.1).

7.4.2 Molecular simulations using LAMMPs

In this experiment, we investigate the compute and network overheads of message passing with
FaasMPI versus a native MPI implementation when executing a complex long-running scientific ap-
plication.

As a workload, we use one of the 5 standard benchmarking problems in the LAMMPS bench-
marking suite: the Lennard-Jones (LJ) atomic fluid simulation with 4 million atoms. To stress FaasMPI’s
communication layer, we also take the controller example [142], and manually increase the number of
synchronisation steps. This way, we achieve three orders of magnitude more cross-host messaging
than the LJ benchmark. We refer to the LJ benchmark as compute-bound, and the modified controller
one as network-bound. We increase the degree of parallelism for LAMMPS both on FaasMPI and
natively on OpenMPI.

Figure 21 shows that, for the compute-bound benchmark, the elapsed time (right vertical axis)
and speed-up (left vertical axis) of both FaasMPI and OpenMPI are similar across parallelism de-
grees: from 1 parallel function to 16 parallel functions (distributed across 4 hosts). FaasMPI slightly
outperforms OpenMPI due to the faster intra-host messaging and the locality-aware collective com-
munication implementation.
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Figure 21: Scalability for message passing (LAMMPS) with different serverless resources
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Figure 22: Execution time under rank migration with all-to-all message passing (We migrate half of
the serverless resources at runtime to maximise locality.)

For the network-bound benchmark, FaasMPI introduces a consistent overhead of around 1.25×
compared to native, with peaks in runtime for particular degrees of parallelism. The consistent slow-
down is due to an additional level of indirection in FaasMPI’s transport layer to support execution
of concurrent applications. The runtime peaks appear when running with 9, 12, and 15 parallel func-
tions, respectively. These parallelism degrees have the highest ratios of inter- to intra-host messages
due to the usage in LAMMPS of cartesian MPI communicators: LAMMPS lays out MPI processes in
a cartesian grid, and only sends messages between neighbours. A higher inter- to intra-host message
ratio means that LAMMPS benefits less from in-memory messaging, and relies more on FaasMPI’s
inter-host network layer, which, as described, adds overhead due to the management of Faaslets
groups and multi-tenancy.

7.4.3 Migration experiments

The next experiment explores the performance impact when FaasMPI migrates MPI ranks of an MPI
application at runtime.

As a synthetic workload, we execute a network-bound all-to-all kernel that performs an all-to-all
synchronisation over a vector in a loop. We provision a KNative cluster with two Standard_D8_v5
hosts. We then enforce distribution by adopting a scheduling policy that allocates half the resources
on each host. We then trigger a barrier control point at either 20%, 40%, 60% or 80% of the iterations,
and measure the execution time of the kernel (including migration) with different numbers of parallel
functions. For 4 parallel functions we use Standard_D4_v5 hosts, and for 8 we use the Standard_D8_v5
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Figure 23: Progress of running a trace of scientific applications on shared cluster (left); makespan of
trace (right) (This compares FaasMPI to OpenMPI with a batch scheduler.)

hosts. As baselines, we compare execution time when all functions execute on the same host (single
host) and are not migrated at all (no migration).

Figure 22 shows that, with FaasMPI, it is always worth migrating ranks to maximise co-location.
Migration takes approximately 0.5 seconds. This is 8% of the execution time of 8 processes-single
host, and 2% of the execution time of 8 processes-no migration. As a consequence, the overhead that
FaasMPI introduces when migrating (Section 7.3.2) is sufficiently low to reduce the elapsed time: no
migration is 5.8× slower than single host, and migrating at 40% of execution results in a 42% runtime
reduction (versus no migration). This is true even if the migration happens late into the kernel execu-
tion: when the barrier control point is at 80%, migrating results in a runtime reduction of 10%. When
the number of functions doubles from 4 to 8, overall execution time increases, as the workload is pro-
portional to the number of parallel functions, but the benefits are the similar: 40% runtime reduction
migrating at 40% of execution, and 8% when migrating at 80%.

7.4.4 Multi-tenancy experiments

This last experiment explores the benefits of using FaasMPI to execute scientific applications on a
shared cluster. This is, the performance benefits of supporting multi-tenant MPI clusters.

As a workload, we generate a trace of molecular simulation jobs with varying levels of paral-
lelism. Each job runs LAMMPS [138, 139]. We pick the Lennard-Jones (LJ) atomic fluid simulation
with 4 million atoms, as it is one of the five standard benchmarking problems in the LAMMPS bench-
marking suite [143]. We deploy a 4-node (Standard_D8_v5) Kubernetes cluster, and schedule jobs
sequentially, until all of them are completed.

For the Batch baseline, we use an implementation of a batch scheduler that imitates the behaviour
of Azure Batch: it allocates jobs at the granularity of VMs assigned to a given user. (We could not use
Azure Batch directly as it currently does not support scheduling jobs belonging to different users.)
We report the progress of completion for one particular trace and the total makespan (time between
first job is submitted and last one is finished).

Figure 23 shows that FaasMPI’s performance is equivalent to that of a dedicated cluster (1 usr)
with the additional isolation guarantees of Faaslets. FaasMPI’s performance does not deteriorate
when increasing the number of users (as it is a multi-tenant runtime), whereas the batch OpenMPI
baseline decreases linearly (2 usr) with the number of users that share the cluster resources. This
improvement is due to FaasMPI’s ability to schedule jobs with a process granularity rather than a
user/VM granularity.
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8 Conclusions

In this deliverable, we have described three programming models that we have developed in Cloud-
Button to better support the building stateful serverless applications: Lithops, CRUCIAL, and FAASM.
Our goal has been to support a range of popular programming languages and paradigms, and enable
a true “lift-and-shift” experience for users when moving their workloads to a serverless cloud.

In Lithops, we have presented a programming model to transparently distribute Python appli-
cations in a serverless environment. Lithops provides implementations for two popular APIs for
parallel programming in Python: Map-Reduce, and multiprocessing. By replacing the library import
for its Lithops’ counterpart, users can automatically deploy single-node Python code to a variety of
serverless backends.

With CRUCIAL, we have presented an object-based programming model to run multi-threaded
Java code transparently in a serverless environment. CRUCIAL introduces two key differences with
respect to multi-threaded Java: threads are replaced by cloud threads, and executor services by server-
less executor services. CRUCIAL users can also use a set of shared objects using well-known Java syntax.

With FAASM, we have presented a stateful serverless runtime using a new lightweight isolation
mechanism, Faaslets, based on WebAssembly. FAASM transparently supports two popular program-
ming models for parallel scientific applications: MPI with FaasMPI, and OpenMP with FaasMP. By
using FAASM scientists can deploy legacy MPI and OpenMP code in a serverless environment, with-
out any hardware configuration nor any constraints on the number of parallel processes. In doing
so, we fulfil the “lift and shift“ nature of the project. We experimentally evaluated the scalability of
FaasMP and FaasMPI, demonstrating that they satisfy the big data requirements of CloudButton.

In summary, the work presented in this deliverable takes us closer to a key goal of CloudBut-
ton, which is to make it easy for users to move from single machine code and traditional big data
frameworks, to the cheap, flexible scalable deployments on serverless clouds. The requirement for
ease-of-use is one of the key KPIs for the CloudButton project. We implement approaches based
on familiar concepts such as multi-threading, multi-programming, MapReduce and object-oriented
programming, as well as transparent execution of existing code using WebAssembly technology built
with OpenMP and MPI.
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