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Abstract—Unexpectedly, the rise of serverless computing has also collaterally started the “democratization” of massive-scale data
parallelism. This new trend heralded by PyWren pursues to enable untrained users to execute single-machine code in the cloud at
massive scale through platforms like AWS Lambda. Driven by this vision, this article presents Lithops, which carries forward the
pioneering work of PyWren to better exploit the innate parallelism of à la MapReduce tasks atop several Functions-as-a-Service
platforms such as AWS Lambda, IBM Cloud Functions, Google Cloud Functions or Knative. Instead of waiting for a cluster to be up and
running in the cloud, Lithops makes easy the task of spawning hundreds and thousands of cloud functions to execute a large job in a
few seconds from start. With Lithops, for instance, users can painlessly perform exploratory data analysis from within a Jupyter
notebook, while it is the Lithops’s engine which takes care of launching the parallel cloud functions, loading dependencies,
automatically partitioning the data, etc. In this article, we describe the design and innovative features of Lithops and evaluate it using
several representative applications, including sentiment analysis, Monte Carlo simulations, and hyperparameter tuning. These
applications manifest the Lithops’ ability to scale single-machine code computations to thousands of cores. And very importantly,
without the need of booting a cold cluster or keeping a warm cluster for occasional tasks.

Index Terms—Serverless Computing, Cloud Computing, Distributed Systems, Lithops, PyWren, IBM Cloud, Multi-cloud.
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1 INTRODUCTION

THE emerging cloud computing category of “Functions-
as-a-Service” (FaaS) has recently become a hot topic in

the cloud world. Solid proof of that is that big cloud vendors
such as Amazon, Microsoft and IBM have rushed their own
versions of FaaS to market, and we have already seen plenty
of top conferences and articles dedicated to this subject [1],
[2], [3], [4], [5]. The shift from the server to the programming
level, the ability to quickly launch thousands of concurrent
functions, and fine-grained subsecond billing have spurred
many users to embrace serverless computing for a variety
of applications (e.g., microservices, IoT, machine learning),
some of them somewhat far from the original intents of the
FaaS computing model.

One of these apparently anti-natural intents has been the
use of cloud functions for massive-scale parallel computing.
In other words, although cloud functions were intended for
asynchronously invoked microservices, their scale and short
provisioning time enabled researchers to examine a different
use: as a massively-parallel, on-demand cloud computing system.
Indeed, the first to do so were Eric Jonas et al. from Berkeley,
which prototyped PyWren [3] in 2017, and showed how a
serverless execution model with stateless cloud functions can
significantly lower the barrier for users to leverage the cloud
for massively parallel workloads. Other recent works such
as [2], [6], [7] have validated this vision.

In general, running analytics applications on a bunch of

• Josep Sampé, Marc Sánchez-Artigas and Pedro Garcı́a-López are with
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cloud functions is difficult. The framework layer, which sits
on top of the serverless execution layer, needs to address a
number of restrictions endemic to this brand-new computing
environment such as:

1. A simplistic way to describe parallel computations such
as the MapReduce programming model;

2. The impossibility of direct, peer-to-peer communication
between functions;

3. The lack of support for function synchronization, so as
between the map and reduce stages;

4. The situation that dependencies and libraries may differ
in a cloud function compared with a local machine; and

5. The lack of portability since each cloud provider has its
own set of proprietary APIs.

As of today, the works that have been devoted to leveraging
the FaaS platforms for large-scale data analytics, have partly
overcome the above issues, but not all at once. For instance,
ExCamera [8] and gg [7] address the impossibility of direct
communication via TCP connections brokered by a TURN
server, but fail to provide a simplistic programming model
such as MapReduce. Or PyWren [3], which does not provide
a reduce primitive and only works on top of AWS Lambda.

1.1 Contributions
To address all the above limitations within a single unified
system, we present Lithops [9]. Lithops is a serverless, multi-
cloud framework for building both embarrassingly parallel
and MapReduce-like cloud-functions applications over the
most popular cloud platforms, such as IBM Cloud, Google
Cloud and AWS. Lithops helps non-cloud users outsource
their “everyday” programs (e.g., Monte Carlo simulations,
sentiment analysis, ....) to the cloud and execute them using
FaaS platforms, thereby enabling hundreds-way parallelism
on short-lived cloud functions. This provides major benefits
in terms of performance for “occasional” users of the cloud,
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who are puzzled by the wide array of choices that must be
made before executing a simple application in parallel (e.g.,
VM instance type, cluster size, programming models, etc.).
Using simple commands such as the map() primitive, users
can effortlessly spawn more than 1, 000 concurrent function
instances of the application code to be run transparently in
the cloud with Lithops.

Specifically, Lithops overcomes the above challenges as
follows. First, it implements a simple MapReduce interface
that enables parallel jobs out of single-machine Python code
in the cloud. Second, it comes along with an intuitive storage
API to allow functions to communicate among one another,
and with the Lithops client. Third, synchronization between
map and reduce stages is implicit, including nested function
compositions, thus releasing the user from this tedious task.
Fourth, it automatically handles dependencies by exploiting
the dynamism of the Python language. Finally, its has been
architected to abstract away the details of cloud providers
and mitigate vendor lock-in.

We summarize our contributions as follows:
• We present Lithops, a multi-cloud framework to enable

the massively-parallel execution of ordinary programs
à la MapReduce by running them over cloud functions.
Many everyday computing and scientific tasks exhibit a
significant degree of innate parallelism (e.g., sentiment
analysis), and can be run as MapReduce tasks. Lithops
allows to transparently instruct hundreds of CPU cores
as cloud functions, run the resulting parallel task out of
single-machine Python code, and collect the results. The
source code is available on the Github repository [9].

• Using several scientific programs (i.e., stock prediction,
hyper-parameter tuning, and sentiment analysis), we
gauge its performance. Compared with a local machine,
Lithops can lead to speedups larger than 100x, without
the need of having a warm cluster running continuously
in the cloud. We also assess its core architectural aspects
when running it at large scale.

A preliminary version of this work has been accepted by
Middleware’18 (Industry Track)1 [10]. The rest of this paper
is structured as follows. We review related work in Section
2, and present the system architecture in Section 3. We detail
the programmability of Lithops in Section 4, and argue its
elasticity in Section 5. Finally, we evaluate the framework in
Section 6, concluding this work in Section 7.

2 RELATED WORK

Based on the MapReduce programming model, Lithops has
multiple antecedents —e.g., cluster-computing systems such
as Hadoop [11] and Spark [12]. The key difference of Lithops
with these systems is the use of a new computing substrate
(cloud functions), mode of execution (parallel but scaling up
from zero) and application domain (ordinary Python code
featuring innate parallelism), all without managing servers.

Now turning attention to the new computing substrate
of cloud functions, we investigate how Lithops fits with the
prior literature. Non-surprisingly, the closest related work is

1. Compared to [10], IBM-PyWren, now rebranded to Lithops, offers
support for multiple cloud providers, event-based monitoring, a richer
(storage) API and the evaluation of two new scientific applications.

TABLE 1: Differences between PyWren [3] and Lithops.

PyWren Lithops

MapReduce Mapping portion;
reducing is still
experimental.

Broader support for
MapReduce jobs. It includes a
reduceByKey-like operation
to run one reducer per object
key in parallel.

Data
discovery &
partitioning

None. Automatic; data partitioning
based on user-defined chunk
sizes or on the data object
granularity.

Composability None. Dynamic compositions of
functions; e.g. sequences:
f3 = f2 ◦ f1.

Runtime Fixed; AWS Lambda,
along with a
Anaconda, a
packaged version of
Python.

Based on Docker; possibility
for users to create its own
custom runtime (a different
Python version, extra
packages) and share it with
other users.

Proxied
function
invocation

Due to network
overhead & AWS
throttling, it may be
slow to launch jobs
with many functions.

Faster; client calls a remote
invoker function, which starts
all functions in parallel within
the cloud.

Monitoring Polling-based
monitoring using
Amazon S3

More efficient; event-based
monitoring using RabbitMQ

Open-source
portability &
extensibility

Adapted to work with
AWS Lambda and
Amazon S3

Multi-cloud: IBM Cloud,
Google Cloud, AWS, Azure,
etc., in addition to Kubernetes

PyWren [3]. PyWren enables the automatic conversion of a
Python user-defined function (UDF) into a massively-parallel
map task. The differences between Lithops and PyWren are
significant. First off, PyWren only works with AWS Lambda.
Lithops is multi-cloud — i.e., the same code can run on IBM
Cloud, AWS, or Google Cloud with no changes. It allows to
execute a broader scope of MapReduce programs, supports
multiple storage backends, and optimizes the spawning of
thousands of cloud functions to 9 seconds. PyWren, function
invocation can take up to 30 seconds due to AWS throttling
[3]. A detailed comparative of Lithops and PyWren is listed
in Table 1. To allow PyWren to shuffle data efficiently, [13]
proposes to combine the AWS ElastiCache service for Redis
[14] with the much cheaper Amazon S3 (object storage). As
efficient data shuffling is critical for Map-Reduce programs,
we are now integrating Primula [15] with Lithops.

Furthermore, several recent attempts have been made to
implement MapReduce with serverless technology. Works
such as Qubole [16] and Flint [17] have attempted to enable
Apache Spark over AWS Lambda service. Qubole creates
the execution DAG on the client side while it executes each
task as a cloud function. In addition to the obvious users’
difficulty to learn the Spark’s API, these approaches present
performance issues. For instance, Qubole reports executor
startup times to be around 2 minutes in the cold start case
or the problem of data shuffling in Flint. In brief, Flint uses
Amazon SQS for the shuffling of intermediate data, which
can generate duplicate messages [17] and is slow [18].

Other projects have tried to implement a MapReduce-
like serverless framework from scratch such as Corral [19]
and Lambada [20], which are still under active development.
Many open issues remain in these systems, being efficient
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data shuffling one of the most salient challenges to address.
In the sense, the aforecited work of Pu et al. [13] have striven
on how to make data shuffling more efficient by leveraging
AWS ElastiCache.

Last but not least, there are other serverless systems that
can be leveraged to run different flavors of MapReduce jobs
such as Apache Pulsar [21] for serverless stream processing,
or Crucial [22] for stateful FaaS-based processing.

3 ARCHITECTURE

The high-level architecture of Lithops is depicted in Figure
1. This architecture is general enough to support standard
APIs such as the Python concurrent.futures [23] API.
In its most fundamental incarnation, Lithops leverages just
two different cloud services: the compute backend to launch
MapReduce jobs; and the storage backend to store all data,
including intermediate results. To keep Lithops completely
serverless, the compute backend is typically a FaaS platform
(e.g., IBM Cloud Functions) and the storage backend is a
BaaS2 storage service (e.g., IBM COS), so that its two main
pillars can scale independently from each other.

Internally, the main components of Lithops are:
• Executor, which allows end users to execute their code

in the cloud through simple API calls. Upon an API call,
it serializes and uploads the single-machine user code
and input data from her local machine (e.g., laptop) to
the storage backend. When a cloud function finishes its
execution, the output data generated by executing the
user code within the cloud function is persisted to the
storage backend. For this reason, the executor monitors
the storage backend for the ouput data and transfers it
to the user’s local machine when available.

• Invoker, which performs the “appropriate” number of
function invocations against the compute backend. We
say “appropriate” since the number of cloud functions
depends on the API call itself. The invoker can be run on
the cloud to hide the high invocation latency when the
Lithops client is very far from the compute backend.

• Worker is the workhorse of Lithops. In short, it runs on
the compute backend, typically as a cloud function, and
its main role is to execute the user code associated with
the API call that spinned it up. In essence, it fetches the
input data and user code from the storage backend, and
executes it, eventually saving the output to the storage
backend. Throughout the article, we shall use the term
worker and function executor interchangeably.

Lithops has been implemented in the Python language. It
capitalizes on Python’s language dynamism to transparently
capture dependencies and related modules, and send them
to workers for execution at runtime. This has thwarted most
of the hindering barriers about deployment, packaging and
job execution that inhibit most users from painlessly entering
the cloud. In this sense, Lithops can be seen as a dynamic task
orchestrator, which can transparently take a user’s code and
input data, save them into the storage backend, and execute
it at large scale by dynamically invoking a generic worker

2. BaaS (Backend-as-a-Service) is a term that has evolved in the last few
years to describe any application-specific serverless cloud service, such
as serverless databases.
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Fig. 1: High-level Lithops architecture.

function. This approach removes the overhead for function
registration, favors the reuse of the single registered function
in order to mitigate cold starts, and allows to run user code
that exceeds the deployment package size constraints, since
dependencies are injected at runtime, not statically.

3.1 Runtime
The runtime is the environment where the user code runs.
As of today, all the compute backends supported by Lithops
permit to run functions in containerized environments, so it
is not rare that Lithops runtimes are built on Docker images.
The fact of leveraging Docker technology allows developers
to create their own custom runtimes. Simply put, a user can
prepare a Docker image with the required packages (Python
modules, system libraries and binaries), and then store it to a
container registry (e.g., Docker Hub registry). The compute
backend service will get the container from the registry the
first time is needed. From thereon, the image is cached in a
local registry to speed up subsequent invocations.

Remarkably, this feature enables the possibility to easily
share runtimes among colleagues. For example, a scientist
may create a Docker image with the package matplotlib,
a library to create 2D figures, and share it with other users
via the Docker Hub registry, avoiding them the overhead to
create the same runtime with this specific library.

To have no side effects, both the client and server ends
have to use the same version of Python. To fulfill this need
with zero user overhead, Lithops automatically detects the
Python version of the client and accordingly deploys the
runtime based upon this information. By now, Lithops can
transparently deploy runtimes for Python >= 3.5. These
runtimes include the most common Python modules, so that
data scientists can start using Lithops right away. It is worth
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to mention here that all cloud providers have limitations in
what refers to the resources available for the runtimes. At
the time of writing, the most powerful cross-vendor setup
allows an execution time limit of 600 seconds, 2GB of RAM
per function execution, and 1, 000 concurrent invocations,
albeit these numbers can be increased if needed.

4 PROGRAMMING MODEL

One fundamental principle behind Lithops is programming
simplicity. As in the pioneering work of Jonas et al. [3], our
objective was to make this tool as much usable as possible,
irrespective of whether the programmer is a cloud expert or
not. For this reason, our tool’s API resembles that in PyWren,
but with extra functionality like the map_reduce() method
to offer a broader MapReduce support.

Furthermore, we have devoted extra efforts to integrate
Lithops with other easy-to-use, scientific tools like Jupyter
notebooks [24]. The dynamic nature of Lithops make it a
perfect fit for exploratory data analysis (EDA) from within a
notebook. Python notebooks are interactive computational
environments, where you can combine code execution, rich
text, mathematics, plots and rich media. To this goal, IBM
Cloud offers a service called IBM Watson Studio [25], which,
among other things, allows to create and execute notebooks
in the cloud. Lithops can be easily imported from within
these notebooks to run data-parallel jobs.

4.1 Function Executor
The core object in Lithops is the executor. This object allows
to perform calls to the Lithops API to run parallel tasks. The
standard way to get everything set up is to import the mod-
ule lithops, and call the class FunctionExecutor() to
get an instance of the executor:

import lithops

lth = lithops.FunctionExecutor()

When an instance of the executor is created, a unique ID
is assigned to the instance. This unique ID is used later to
keep track of function invocations and the results stored in
the storage backend. The executor loads the configuration
(e.g., account details) required to grant Lithops access to the
compute and storage backends necessary to launch Lithops.

4.2 Application Programming Interface (API)
Lithops mimics the concurrent.futures [23] API. The
executor instance provides access to the methods in the
API. The API is comprehensive enough for novice users to
execute their computations out of the box, but also simple
enough for experts to easily tune the system by adjusting
relevant knobs and switches (parameters). The API is listed
in Table 2. It includes three main methods to run users’ code
in the cloud: call_async(), map() and map_reduce().
Moreover, it has one method to keep track of the function
executions: wait(), and another one to download the final
results from the storage backend: get_result(). There is
also a method to create automated plots of the execution
trace of the different function invocations: plot(), and a
cleaning method to delete all the unnecessary intermediate
data generated by Lithops: clean().

TABLE 2: API specification.

Method Type Input parameters

call_async() Async. function code, data

map() Async. map function
code, map data

map_reduce() Async. map/reduce func.
code, map data

wait() Sync. list of futures,
when to unlock

get_result() Sync. list of futures

plot() Sync. list of futures,
destination folder

clean() Async. list of futures

When a computing method is called (e.g., map()), both
the user-defined (UDF) code to run as a cloud function and
input data are first serialized and then saved to the storage
backend. Next, the platform transparently interacts with the
compute backend to effectively execute the user code. This
requires unserializing the code and data, and run it through
a Lithops worker. Once execution concludes, the results and
some metadata about the status of the Lithops workers (e.g.,
execution times) are stored back to the storage backend.

To cater for non-skilled users, the API has been kept very
simple, so that the typical behavior of invoking a computing
method (e.g., map()) followed by a call to get_result()
to retrieve the results does not require dealing with complex
artifacts. Actually, the readiness of the results is internally
managed by Lithops (e.g., see the listing in the description
of the map() method). To deliver a finer control, all the three
computing methods return future3 objects. This allows more
experts users to monitor the status of the function executors
and retrieve the results when available.

Let us review succinctly the main methods of the API:

. call_async(). This method permits to asynchronously
execute just one single UDF in the cloud. As all computing
methods, the output of the UDF as specified by its return
statement is saved to the storage backend for an eventual
retrieval with a call to get_result(). This method is non-
blocking. That is, the sequential execution of the local code
resumes without waiting for the results. The parameters of
this command are the function_code and the input data
that the Lithops worker receives.

. map(). The second method is called map(). This method
is used to run a UDF in parallel (map-style parallelism). This
method is also non-blocking and it takes as main input the
map_function_code and the data that the map function
executors receive. Unlike the prior method, this one receives
as input data a list of values. For each element of the input
list, a separated Lithops worker is started to process the list
in parallel. For example, to launch 3 function executors, the
list must contain 3 elements as follows:

def my map function(x):

return x + 7

3. We mimic the Python 3.x futures interface (https://pythonhosted.
org/futures/).
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input data = [3, 6, 9]

lth = lithops.FunctionExecutor()

lth.map(my map function , input data)

. map_reduce(). The third method of the API is used to
run MapReduce flows, i.e., multiple map function executors
(map phase), and one or multiple reduce function executors
(reduce phase). This method is also non-blocking. It takes as
input the map_function_code, the input data as a list of
values, and the reduce_function_code. As in the prior
method, it spawns one function executor for each value in
the list.

. wait(). This method fulfills two important needs: 1) to
monitor the status of concurrent function executions; and
2) to let users set synchronization points in their client code.
This is the reason why this method is synchronous, i.e., the
local client code is blocked until the call to wait() ends.
Further, it provides a parameter to decide when to release
the call and continue execution. There are three options: 1)
‘Always’: it checks whether or not the results are available
when wait() is invoked. If the case, it returns them. Other-
wise, it resumes execution; 2) ‘Any completed’: it resumes
execution upon termination of any function invocation; and 3)
‘All completed’: it waits until all the results are available
in the storage backend. In all the cases, it returns two lists.
The first list contains the futures that has been successfully
completed. The second list reports the uncompleted ones.
For more details about function monitoring, see Section 4.4.

. get_result(). In Lithops, the output of any UDF is
never returned directly to the client, but saved to the storage
backend. The reason is that the size of the output could be
big, or just be intermediate state for a subsequent MapReduce
job. Either way, it may be interesting for the user to retrieve
the output data from the cloud. This need is fulfilled with
the get_result() method. Internally, it calls wait() with
the ‘All completed’ option to ensure the completion of all
concurrent function executions. When the blocking wait()
invocation returns, the results are immediately downloaded
in parallel.

Also, it adds new functionality like timeout support, and
a CLI-based interface to cancel the retrieval of results, which
also displays a progress bar to inform users about the % of
completion of the map() and map_reduce() calls. Last but
not least, this method is composition-aware: it transparently
waits for an on-going function composition to complete, just
returning the final result to users. See Section 4.5 for further
details.

. plot(). This method is useful to display the execution
trace of a parallel workflow. It outputs two plots onto the
destination folder dst of the user’s local filesystem. The
first plot is a timeline diagram, which, among other things,
records the invocation, activation and completion times of
each function executor. Examples of this type of plot can be
found in Fig. 2b and Fig. 2e. The second plot is a horizontal
histogram which is very convenient to quantify the degree
of concurrency of the different function executors. An exam-
ple of this plot is shown in Fig. 2c.

. clean(). This method allows to clean all the temporary
data produced by Lithops once a job has ended. Usually, it is
automatically called after an invocation to get_result().

. Storage API. To chain MapReduce jobs without forcing
the client machine to download big intermediate state from
the cloud, Lithops provides the Storage API. This API makes
it straightforward to operate the storage backend with calls
similar to those of the Python boto3 library. To wit, one can
use the Storage API to upload a file from our computer to a
cloud storage service, and then read this file from a function
spawned with the call_async() method:

from lithops import FunctionExecutor , Storage

BUCKET, KEY = ’my−bucket’, ’test.txt’

def get file(key, storage):

return storage.get object(bucket=BUCKET, key=KEY))

storage = Storage()

storage.put object(bucket=BUCKET, key=KEY, body=’Hi!’)

with FunctionExecutor() as fexec:

fut = fexec.call async(get file , KEY)

print(fut.result())

4.3 Data discovery and partitioning

To provide an easy-to-use MapReduce execution platform,
a key ingredient is a built-in data partitioner that abstracts
users from this arduous, prone to error task. Of course, this
support has been given to the map() and map_reduce()
methods, along with a useful data discovery mechanism. In
particular, the only action that a user has to do is to supply
the list of object keys comprising the dataset. However, as
a dataset may contain hundreds, or even thousands of files,
it is instead possible to enumerate the name of the storage
bucket(s) containing all the dataset objects. In the latter case,
the framework is responsible for discovering all the objects
in the bucket(s), and automatically partition them.

Once data discovery has terminated, the data partitioner
enters the scene to seamlessly generate the partitions based
on a configurable chunk size parameter. If no chunk size is
specified, each object will be processed by a single executor.
Otherwise, each data partition is automatically assigned to
a function executor, which applies the map function to the
data partition, and finally writes the output to the storage
backend. The partitioner then executes the reduce function.
The reduce function will wait for all the partial results before
processing them.

Lithops supports more than one reducer. By default, the
map_reduce() method uses one reducer for all the dataset
partitions. Fortunately, it is possible to increase the number
of reducers and make map_reduce() behave as a kind of
Spark’s reduceByKey() operator by setting the parameter
reducer_one_per_object=True. When this parameter
is enabled, all the data values for the same object key are
processed by a separate reducer. This feature is very useful,
since very often, it is necessary to produce a different result
for every object in the dataset (e.g., see the real use case on
www.airbnb.com in Section 6.5.3).
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4.4 Monitoring

The monitoring subsystem has been devised to keep track of
function executions as well as to establish synchronization
points. The monitoring logic has been encapsulated into
the wait() method, which admits three options to control
when a call to this blocking method must resume execution
(see Section 4.2 for details).

At a low level, the monitoring subsystem supports two
ways to track the progress of function executions. These are:

• Polling-based, where the storage backend is periodically
polled every x seconds to find out whether the Lithops
workers have finished or not; and

• Event-based, where the function executors themselves
signal their completion through a termination event.

We recall here that a function execution always outputs
two different objects to the storage backend: a file named
result.pickle that contains the results of the UDF as
circumscribed by the return statement, and a metadata file
called status.json that contains the status of the function
execution, along with some statistics about the execution of
the function (timestamps, etc).

. Polling-based. By default, Lithops has adopted the same
monitoring mechanism as that in PyWren [3]: the periodic
polling of the object storage BaaS to check the termination of
the function executors. It works as follows: the Lithops client
makes a HEAD request against the storage backend every
x seconds to list all the available status.json objects.
All the available files are then downloaded without further
ado. In the worst case, this process is repeated until all
the status.json files are downloaded to fulfill the ‘All
completed’ option.

This strategy has the major advantage that it does not
require extra services for monitoring. However, it negatively
impacts the job execution time due to the polling overhead:
1) although the polling rate is configurable (2 secs by default),
periodic polling will surely increase the execution time. The
magnitude of the increase depends on the number of HEAD
requests. To see this, notice that if n HEAD requests were
needed to ensure the completion of all UDFs, a worst-case
overhead of O(n) seconds would be added to the execution
time; and 2) a high IO overhead. Recall that each available
status.json file will trigger a new download request to
the storage backend. For a large number of executors (e.g.,
> 1, 000 function executors), this may become problematic,
as the client has to download one small file per executor, i.e.,
the status.json file, which is bandwidth inefficient.

. Event-based. To address the above inefficiencies, Lithops
supports event-based monitoring. Although this approach
requires an extra service — specifically, RabbitMQ, it largely
diminishes the monitoring overhead. It operates as follows:
Lithops first creates a global queue, where all the function
executors will later publish a termination event to signal the
completion of each UDF. This event consists of the contents
of the status.json file. Once all the function invocations
have been spawned, the wait() method starts to listen
to this queue and collect the events as they are produced.
This simple but efficient approach can decrease, in some
cases, the monitoring overhead by around 99% compared
with the polling-based approach. It is worth to mention that

usually, this event-based service is deployed on a serverful
virtual machine, so this component would not be serverless
as the rest of Lithops components. The full evaluation and
the results are in Section 6.2.

4.5 Composability

A novel feature of Lithops is function composition. It must
be noted that although complex function composition still
remains an open issue [5], [26], Lithops yet allows a certain
level of composability. Function composability is achieved
programatically, and not declaratively as in services like AWS
Step Functions [27], where function composition is realized
writing state machines in JSON text. A programmatic style
is a priori more powerful as we have available all the control
flow instructions from Python to compose workflows.

In commercial FaaS orchestration systems [26], the UDFs
of a composition need to be first deployed to the platform
before being called. On the contrary, Lithops simplifies this
“boring” task to adding a few lines of boilerplate code (e.g.,
a call to the FunctionExecutor() class to get a function
executor, followed by a call to map() for parallel execution).
In other words, any regular Python function can be executed
with Lithops without its prior deployment as a standalone
function in the FaaS platform. This fact enables the dynamic
and parallel composability of functions.

To wit, consider a simple parallel composition: a user
invokes a first UDF, say foo(), via call_async(). While
doing some processing, this UDF might dynamically create
a list of 100 elements that would need further processing. To
do so quickly, foo() could call the map() method to launch
100 parallel jobs to process them. This example illustrates
that with a just few lines, it is possible to create a dynamic
composition of functions:

import lithops

def add seven(y)

return y + 7

def foo(x):

# do some processing
rlist = random list(x)

lth = lithops.FunctionExecutor()

return lth.map(add seven , rlist)

lth = lithops.FunctionExecutor()

lth.call async(foo, 100)

result = lth.get result()

. Sequences. A common type of composition are sequences,
which chain functions with one another. Each function acts
on the data outputted by its predecessor in the chain. Such
a composition can be realized by having each function call
the successor function in the sequence through an execution
method (call_async(), map() or map_reduce()) in its
return statement. As a result, the list of futures generated
by each invocation are returned back to the caller (e.g., see
the listing above), eventually reaching the head of the chain.
Finally, when the get_result() method receives this list
of futures, it transparently starts to track all the functions



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 7

in the sequence as it was a single-phase composition, letting
the user program retrieve the result of the last function when
the sequence finishes.

5 ELASTICITY AND CONCURRENCY

A high degree of elasticity (i.e., fast adaptation to workload
changes) and concurrency (i.e., number of functions running
concurrently) are critical to the success of Lithops, and any
serverless parallel framework. Both properties are important
to allow a quick execution of data-parallel tasks. Fortunately,
FaaS platforms can provision a large amount of compute
power quickly, and thus, perform “big data”-styled analysis
with good performance.

With Lithops, it is straightforward to handle bursty and
heavy workloads that require hundreds, or even thousands,
of concurrent workers without waiting for machines to spin
up. FaaS platforms like IBM Cloud Functions are based on
containers which are fast to boot up. Consequently, function
executors can be up within a sub-second range, plainly right
after their corresponding invocations.

5.1 Proxied Function Invocation
When real testing Lithops, we identified some performance
issues due to network latency. Concretely, we observed that
a high network latency between the client and the compute
backend can largely rise the total invocation time. To put it
baldly, while the invocation of a thousand function executors
from a low-latency network (i.e., within a datacenter) takes
around 3 secs, this time could grow up to 40 secs (or more)
in a high-latency network, despite leveraging threading to
concurrently spawn the functions. Further, a higher latency
turns into more invocation failures, which in turn increase
the total invocation time due to invocation retries.

To overcome this issue, we designed the proxied function
invocation mechanism, which can be enabled and disabled as
needed by the user. It leverages the composability of Lithops
to build a two-level invocation mechanism. In the first level,
it spawns the invoker as a cloud function. In the second level,
the invoker spins up the target number of function executors.
Since the invoker is located inside the compute backend, the
invocation latency is thus the lowest possible. This reduces
both the total invocation time and the number of invocation
failures. The invoker immediately returns the control to the
Lithops client once it finishes all the invocations.

6 EXPERIMENTAL EVALUATION

The evaluation of Lithops is by far extensive and covers the
main components of its design. This includes monitoring,
concurrency and elasticity, and proxied function spawning,
as well as its practical performance in several real (scientific)
programs, namely stock prediction, hyperparameter tuning,
and tone analysis.

Experimental setup. For all the experiments with Lithops,
we have used the IBM Cloud services in the us-east region
— i.e., Washington DC. As a baseline for our experiments,
we have used a laptop with the following specs: Intel Core
i5 (4 cores) with 16GB RAM and Ubuntu 20.04. It is worth
to notice that the focus of Lithops is to simplify the parallel

execution of everyday tasks in the cloud, and not to compete
with complex computing stacks running on warm clusters.
In this sense, it is more interesting to assess the performance
benefits for non-cloud users, who typically run programs at
“laptop scale”. Or to put it baldly, the benefits from shifting
from the laptop to the cloud.

To test the effectiveness of proxied function invocation,
we used another client machine (Intel Core i5-4 cores, 8GB
RAM with Ubuntu 20.04), located in a remote network with
high latency.

6.1 PyWren vs Lithops
As a sanity check, we wanted to show the higher efficiency
of Lithops compared to PyWren [3] via a representative test.
More precisely, we made of use the map() operator, which is
common in both systems, to run 1, 000 executors in parallel,
each running a 10-second sleep UDF with no computation.

Fig. 2a shows the results for PyWren. Fig. 2d reports the
ones for Lithops. We set the same scale in both plots to ease
the comparison. As can be seen in the figures, the invocation
phase is 3x faster in Lithops, which finishes around second
14 compared with the 21s taken by PyWren. This difference
can be explained by the action of the Lithops proxied, two-
level invocation mechanism. The get_result() phase is
also a few seconds shorter in Lithops due to our event-based
termination detector compared with the polling-based one
from PyWren.

6.2 Monitoring
The goal of this experiment is to compare the performance of
both monitoring strategies: polling-based vs. event-based. For
this test, we used a simple UDF that sleeps for 10 seconds,
which was run concurrently in 1, 000 function executors for
each monitoring strategy. For the polling-based strategy, we
used IBM COS as the storage backend. For the event-based
strategy, we used RabbitMQ manually deployed on a virtual
machine instance (Ubuntu 20.04, 2 Cores, 4GB RAM) on the
IBM Cloud, resulting in a hybrid, non-pure FaaS system.

The results of polling-based and event-based monitoring
are depicted in Fig. 2b and Fig. 2e, respectively. As can be
seen in the figures, the overall execution time decreases from
17 secs to 11.5 secs with event-based monitoring, which
yields a reduction of ≈ 32%. This is because the monitoring
time has been reduced from 6 secs to only 0.3 secs sthrough
eventing, which represents an overhead reduction of 95%.

It should be noted that Fig. 2b reports the optimal results
for polling-based monitoring. In practice, this test can easily
take more time to complete, even surpassing 14 seconds. So,
the improvement with event-based monitoring system will
presumably be greater in real use cases. Indeed, the major
limitation of polling-based monitoring is the fact that objects
( i.e., status.json files) do not become visible (or listable)
at the very moment they have been uploaded. This causes
polling-based monitoring to induce significant overhead.

6.3 Elasticity and Concurrency
For this test, we employed a function that runs a compute-
bound task for 60 seconds. More concretely, we first checked
the correct interaction of all the cloud services involved
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(a) Job example on PyWren (sleep of 10
seconds).

(b) Monitoring a Lithops job (sleep of 10
seconds) polling the storage backend in
intervals of 2 seconds.

(c) Elasticity and Concurrency. Black lines
show total concurrent functions. Each
horizontal gray line represents a function
execution.

(d) Job example on Lithops (sleep of 10
seconds).

(e) Monitoring a Lithops job (sleep of
10 seconds) using RabbitMQ to capture
the termination events from the function
activations.

(f) Local invoker vs remote invoker. The
y-axis shows the total concurrent invoca-
tions for in each second represented by
the x-axis.

Fig. 2: Evaluation of Lithops main components.

in Lithops, and then measured its degree of elasticity and
concurrency.

We varied the workload by increasing the number of
concurrent UDF invocations, from 500 up to 2, 000 function
executors. Fig. 2c shows the results of the experiment. For
every workload, the black line signals the concurrency level
delivered at every time instant. The stacked horizontal gray
lines represent the total time that each function invocation
took to complete.

As it can be easily seen in this figure, some functions ran
fast while others slow. Such variability is due to the internal
operation of IBM Cloud Functions, the time to spawn all
function executors, and the available resources in the cluster.
However, we outline that for all the workloads, we obtained
full concurrency, i.e., the black line met the target workload
size in all the experiments.

Moreover, Fig. 2c verifies that IBM Cloud Functions met
the elasticity objective at all times. We ran the experiment
for 500, 1, 000, 1, 500 and 2, 000 function invocations. In all
scenarios, we observed that the system had no problems to
allocate the additional new 500 function executors to keep
up with the growing demand of UDF invocations posed by
the client.

6.4 Proxied Function Invocation
We evaluated the efficacy of the Lithops proxied invocation
mechanism by running two experiments of 1, 000 functions
each. For simplicity, all functions executed a compute-bound
UDF of 50 seconds. In the first test, the Lithops client issued
the 1, 000 functions locally. In the second test, we enabled
the proxied function invoker. The results in Fig. 2f visualize

how from a high-latency network, it can take a considerable
time to complete the invocation phase when all functions
are invoked from a local machine. More specifically, 43% of
the 88 seconds that took the first experiment were wasted on
function invocation. In contrast, remote spawning was able
to reduce the invocation time to just 6 seconds, representing
a 6x improvement from our specific high-latency location.

6.5 Applications
We used Lithops to run various applications at scale in the
IBM Cloud, each emitting MapReduce jobs.We describe and
evaluate them next to show the high utility of Lithops.

6.5.1 Monte Carlo-based Stock Prediction
Stock price forecasting provides a compelling guidance for
making decisions in the financial markets today. To show the
way that Lithops can handle financial data, we used Monte
Carlo simulations to forecast the value of IBM stock prices.
As input, we used IBM daily stock prices for years 2014,
2015, and 2016 [28], to make a future prediction of IBM
stock prices for the next 1095 days. For the forecast model,
we adopted a classic model based on Geometric Brownian
Motion [29]. Due to the stochastic nature of this model, our
general approach was to run a large number of Monte Carlo
simulations of this model to make a correct prediction.

To execute Monte Carlo simulations in parallel, we used
Lithops. We first encapsulated the logic to generate a num-
ber of forecasts, each predicting a number of days, into a
Python function called process_forecasts(). Second,
we implemented a function called combine_forecasts()
to summarize the results of the forecasting function. That is,
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Fig. 3: Effect of the number of function executors for fixed
work (100, 000 forecasts) on the Monte Carlo-based daily
stock price prediction job.

our idea was to execute multiple stock prediction forecasts
(process_forecasts()), all of them running as separate
function invocations. Once all the forecasts were completed,
one single reducer (combine_forecasts()) was used to
aggregate the results from all the invocations and generate
the graph with the subsequent predictions.

With only three lines of additional code4, we managed to
perform thousands of Monte Carlo simulations distributed
across thousands of concurrent function executors:

lth = lithops.FunctionExecutor(backend=’ibm cf’)

lth.map reduce(process forecasts , data=range(1000),

combine forecasts)

result = lth.get result()

Listing 1: Monte Carlo simulations for daily stock price
prediction.

Fig. 3 shows the execution time of stock price prediction
for an increasing number of function executors and 100, 000
forecasts. We ran the experiment five times and the collected
results were averaged to produce the final plot. Concretely,
each bar represents the mean execution time, while the error
bars signal the 99th percentile. As shown in the figure, the
running time halves when doubling the number of function
executors from 500 to 1k. For 1, 200 executors, this reduction
is not longer linear. The main reason is that some executors
become stragglers during the experiment, thus delaying the
execution of the single reducer in the system.

Because it was not feasible to make so many forecasts on
our laptop, we repeated the same experiment but at smaller
scale: predicting daily stock prices for 1, 095 days by making
only 1, 000 forecasts. We used 100 function executors in this
case. Again the experiment was run five times. Results are
listed in Table 3. As can be seen in the table, we reduced the
execution time from 2.56 minutes to just a few seconds, all
with close to zero development effort (just three additional
lines of code as shown in Listing 1).

4. See implementation details available at: https://github.com/
pywren/pywren-ibm-cloud/blob/master/examples/monte carlo/
stock prediction monte carlo with PyWren.ipynb

TABLE 3: Daily stock price prediction for 1, 095 days. 100
function executors were used in Lithops.

Execution time (sec) Confidence level (99%)

Laptop 154.209 ±3.066
Lithops 20.613 ±2.073

6.5.2 Hyperparameter Tuning

It is well-known that the performance of machine learning
(ML) models very often depends on a relatively large variety
of configuration options, the so-called hyperparameters. It is
thus crucial that any ML system can effectively optimize its
hyperparameters in the quest for better performance. While
hyperparameters are model-specific, parameter sweeps are
embarrassingly parallel (e.g., random and grid search, etc.),
so hyperparameter tuning is indeed a good fit for serverless
computing as discussed in [30], [31]. To judge the potential
of Lithops for hyperamater tuning, we have targeted a
different scenario other than neural networks as in the prior
literature [30], [31]. More concretely, we have focused on text
classification, i.e., a significant problem of Natural Language
Processing (NLP), and more specifically, on how to choose
the optimal set of hyperparameters for fastText algorithm
[32], an state-of-the-art text classifier invented by Facebook.
In particular, we demonstrate with this example how simple
it is to find optimal hyperparameters at scale with Lithops.
Indeed, we found it very easy to develop a small submodule
on top of Lithops to perform hyperparameter tuning. In as
few as ≈ 40 lines of Python code, this module parallelizes
random search, but also the evaluation of each parameter set
using k-fold cross-validation. Yet, what is more interesting is
the fact that this task is almost fully automated. The user has
only to specify the number of hyperparameter sets to sample
and the value of k. From that minimal setup, the submodule
launches parallel hyperparameter search accordingly.

Datasets. For the experiments, we utilized three datasets,
all downloadable from fastText website [33]. These are:
AG’s News, DBPedia and Yelp Review Full, which contain
120k, 560k and 650k train samples labeled into 4, 14 and
5 classes, respectively. For complete details on the datasets,
we kindly refer the reader to [34].

Experiment. Our evaluation pipeline consisted of two tests.
For each dataset, we first conducted 5-fold cross-validation
with all the fastText parameters set to default values in
our laptop machine. We repeated this experiment ten times,
and recorded the total execution time for each experimental
run to establish a comprehensive baseline.

As a second experiment, we utilized the Lithops system
to perform hyperparameter tuning. In particular, we chose
to adjust three hyperparameters. As our goal is to quantify
the ability of Lithops to speed up hyperparameter tuning,
and not to find the best configuration, any other parameters
could have been equally chosen. For reproducibility, Table 4
details them, along with their range of values. In particular,
we performed a random search over this three-dimensional
parameter space for an increasing number of trials. Thanks
to Lithops, each trial of hyperparameters could be run in
parallel with the rest; it sufficed a call to map_reduce().
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TABLE 4: Chosen fastText hyperparameters.

Name Description Range Default

lr learning rate [0.01, 1] 0.1

ws size of the context window [3..7] 5

epoch number of epochs {1, 5, 10} 5

TABLE 5: Relative workload and speedup compared to the
laptop (baseline) varying the number of hyperparameters
sets h ∈ {5, 10, 20, 40}.

h Workload Number of
Projected speedup

increase executors AG’s News DBPedia Yelp Full

5 26.7x 31 11.15x 13.46x 14.04x

10 53.3x 71 21.94x 23.67x 23.18x

20 106.6x 141 39.97x 45.1x 44.24x

40 213.3x 281 76.27x 91.26x 88.2x

The reduce function was used to collect the precision value
of each trial and return the candidate with the highest value.

For each trial, we again ran 5-fold cross-validation. But
very interestingly, this time this task was also made parallel
with a call to map_reduce(). That is, 5 function executors
were launched to process the 5 folds in parallel by invoking
train_supervised(), namely, the fastText’s method
for supervised classification. The final reduce function was
used to gather the precision value from each fold, and thus,
produce an average precision value for the whole trial.

It is important to note here that this example shows how
easy it is to handle (two-level) nested parallelism and simple
compositions with Lithops.

Results. Fig. 3 illustrates the execution time for a growing
number of hyperparameter sets h, where h ∈ {5, 10, 20, 40}.
Error bars indicate the 99th percentile. As can be seen in the
figure, the execution time converges to a fixed point as the
number of hyperparameter sets increases, irrespective of the
dataset. This behavior demonstrates that Lithops scales out
efficiently by launching function executors in proportion to
the workload. Higher efficiency of Lithops for small values
of h is explained by a lesser monitoring overhead, that is, a
smaller number of function executors to keep track of. We
also note that, although at first glance Lithops could appear
to perform poorer than the user laptop, Lithops processed a
heavier workload in all the cases as reported in Table 5, thus
delivering a significant speedup for all datasets if the same
workloads were to be executed on the laptop. The sublinear
speedup is due to monitoring overhead (that includes result
fetch), the time to spawn the function executors, and the I/O
time for reading input data from IBM COS.

6.5.3 Sentiment Analysis

To conclude, we crafted a use case example to demonstrate
how Lithops can help to process datasets stored in IBM COS.
For this example, we used www.airbnb.com data from
various cities around the world, in conjunction with a tone
analyzer, i.e., a linguistic analyzer to uncover emotional and
language tones in written text. To make it more appealing,
we plotted the results visually on a map.
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Fig. 4: Execution time against the number of searched hy-
perparameter sets h ∈ {5, 10, 20, 40} in fastText, using
5-fold cross-validation.

Datasets. The data was retrieved from IBM Watson Studio
Community [35] and then copied to an IBM COS bucket. In
particular, there is a dataset per city, which contains all the
apartment reviews written by the users. As some cities are
more “touristy” than others, the dataset size varies from city
to city. The full dataset is made of 33 cities, with a total size
of 1.9GB and 3, 695, 107 comments.

Experiment. We first tested how much time the experiment
takes without the concurrency of Lithops. To this aim, we
built a Jupyter notebook in IBM Watson Studio to process
sequentially all the cities. For the hardware configuration of
the VM, we borrowed the same specs of our laptop: 4vCPU
with 16GB of RAM. With this setup, it took 1 hour and 26
minutes to serially process all the 3, 695, 107 comments and
render the 33 city maps, which is a significant time burden,
especially for impatient users.

Next, we redid the same experiment but with the aid of
Lithops. Essentially, we made some cosmetic changes to the
code to execute the experiment via the map_reduce() call.
On the one hand, we created another Jupyter notebook in
IBM Watson Studio with the same hardware configuration
as in the prior test. On the other hand, we set up the Lithops
IBM CF runtime to use 1GB of RAM.

Remember that it is possible to call map_reduce() with
a specific chunk size. The chunk size determines the final
concurrency, so we played out with different chunk sizes to
understand how it affects the total execution time. Also, we
set reducer_one_per_object=True to have a dedicated
reducer per city dataset. That is, each reducer collected the
partial results from its corresponding city and rendered the
final map. An example of a map is depicted in Fig. 5. In
this case, it represents the tone analysis of the comments of
the City of New York. Each point in the map represents the
location of the apartment, and the color of the point signals
the tone of the comments.

Results. In Table 6, we report the results of this experiment.
A first key observation to be made is that Lithops achieved
excellent speedups, greater than 100x. This proves the huge
benefit of Lithops to non-cloud users, who can readily
leverage the large number of CPU cycles available in the
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TABLE 6: Performance of tone analysis of Airbnb reviews
for different chunk sizes. The results are better than in our
preliminary work [10] as they have been expressly re-run
for this work.

Chunk
size
(MB)

Number of
executors

Execution
time

(sec)

Speedup

——- ——- 5160 Baseline

64 47 313.87 16.43x

32 72 196.24 26.29x

16 129 95.48 54.04x

8 242 59.77 86.33x

4 471 35.01 147.38x

2 923 25.58 201.72x

Fig. 5: Tone analysis of the Airbnb reviews of New York City.
Green, blue and red points stand for good, neutral, and bad
comments, resp.

cloud, with no need to struggle with hardware management
and specialized stacks such as Spark and MPI. In practice,
although Lithops exhibits some overhead, users would not
care as much about parallel efficiency, but more about the
savings in compute times with close to zero devops cost.

Notice that the number of function executors does not
duplicate when halving the chunk size. This occurs because
partitioning takes place within each dataset file. Either way,
the achieved parallel execution time is proportional to the
number of function executors, growing between 16.43x and
201.72x for chunks of 64MB and 2MB, respectively.

7 CONCLUSIONS

In this work, we have proposed Lithops, a novel serverless
platform for executing parallel tasks à la MapReduce on the
most popular cloud providers (e.g., IBM, AWS and Google).
With close to zero overhead to cater for “untrained” users of
the cloud, Lithops comes along with a useful set of features,
including automated data discovery & partitioning, nested
composability, seamless integration with Jupyter notebooks,
etc. We have thoroughly described all these valuable assets.
Using several scientific programs, namely, stock prediction,
hyperparameter tuning, and tone analysis, we have assessed
Lithops performance. Compared with a commodity machine,

Lithops has yielded important speedups, even larger than
100x, without the need of a warm cluster running continuously
in the cloud.
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P. Garcı́a-López, “Primula: A practical shuffle/sort operator for
serverless computing,” in 21st International Middleware Conference
Industrial Track (Middleware ’20), 2020, pp. 31–37.

[16] Qubole, “Spark on lambda,” https://github.com/qubole/
spark-on-lambda.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 12

[17] Y. Kim and J. Lin, “Serverless data analytics with flint,” in 11th
IEEE International Conference on Cloud Computing, (CLOUD’18),
2018, pp. 451–455.

[18] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” in 9th Biennial Conference on
Innovative Data Systems Research (CIDR 2019), 2019.

[19] B. Congdon, “Corral a mapreduce framework,” https://github.
com/bcongdon/corral.

[20] J. Spillner, “Lambada,” https://gitlab.com/josefspillner/
lambada.

[21] “Pulsar functions overview,” https://pulsar.apache.org/docs/
en/functions-overview/.

[22] D. Barcelona-Pons, M. Sánchez-Artigas, G. Parı́s, P. Sutra, and
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