
Universitat Rovira i Virgili (URV) y Universitat Oberta de Catalunya (UOC)

Master in Computational and Mathematical Engineering

FINAL MASTER PROJECT

Area: Cloud Computing

Painless Data Analytics in the Cloud

Grouping data in serverless architectures

—————————————————————————–

Autor: German Telmo Eizaguirre Suarez

Tutor: Marc Sánchez Artigas

—————————————————————————–

Tarragona, June 19, 2021

Dr. Marc Sánchez Artigas, certifies that the student German Telmo Eizaguirre Suárez has

elaborated the work under his direction and he authorizes the presentation of this memory for

its evaluation.

Director’s signature:

Credits/Copyright

This work is subject to a licence of Attribution-NonCommercial-NoDerivs 3.0 of Creative Com-

mons.

i

ii

FINAL PROJECT SHEET

Title: Painless Data Analytics in the Cloud

Autor: German Telmo Eizaguirre Suárez

Tutor: Marc Sánchez Artigas

Date (mm/yyyy): 06/2021

Program: Master in Computational and Mathematical Engineering

Area: Cloud Computing

Language: English

Key words Cloud Computing, Big Data, Serverless

iii

iv

Dedicatory

For Jurgi, Borja, Endika, Iker, Jon, Koldo, Jon, Mikel, Gorka, Raúl, Urbil and Mikel.

v

vi

Acknowledgments

I would like to thank the whole CloudLab group for their support and good vibes during the

completion of this work, specially my thesis director Dr. Sánchez Artigas, for putting up with

my stumbles and my lack of concentration and guiding me on the right path.

vii

viii

Abstract

Big Data analysis is ubiquitous in every major research and industry domain. To exploit Big

Data’s vast information disponibility, analysis technologies have moved to the Cloud, which

provides the necessary escalability for workloads of extremely variable size. However, most

cloud technologies are not usable by the average programmer, as they entail complex resource

selection and management tasks.

The serverless paradigm, with FaaS as its basic computation unit, brings enough transparency

to bridge untrained cloud programmers and exigent cloud computations. During the past years,

the progress on serverless analytics platforms has been remarkable. Unfortunately, users are

still involved in underlying lower level responsibilities, such as auxiliary resource provisioning

or specifying the scale of parallelism of distributed applications. In this work, we validate a

fully transparent and serverless framework for I/O intensive data analytics operations with

practically no intervention by the user. We present an efficient groupBy operator capable of

operating on large scale datasets in a completely serverless architecture. Finally, we propose

some performance optimizations for FaaS applications and we evaluate them on the Terasort

benchmark with encouraging results.

Keywords: Cloud Computing, Big Data, Serverless

ix

x

Contents

Abstract ix

Index xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Big data analysis in the Cloud . 1

1.2 FaaS for user-friendly Cloud computing . 3

1.3 Data analysis in the Cloud . 5

1.4 Towards automated, I/O intensive workloads in serverless environments 7

1.5 Contribution . 8

2 Related Work 11

3 Planning 13

3.1 Objectives . 13

3.2 Development scheme . 14

3.3 Task definition . 15

4 Design and architecture 17

4.1 groupBy operator . 17

4.2 Integration of the groupBy with previous contributions 17

4.2.1 Grouping with the MapReduce algorithm 19

4.2.2 Granulated I/O . 19

4.2.3 Barrierless execution . 20

4.2.4 Speculative execution . 20

4.2.5 Inferring the optimal level of parallelism 21

xi

xii CONTENTS

4.3 Improving I/O performance . 23

4.3.1 Concurrent I/O . 23

4.3.2 Optimizing intermediary objects . 24

4.4 Memory usage in cloud functions . 26

4.5 Using compiled code. 28

5 Implementation 31

5.1 Base framework . 31

5.2 I/O and memory optimizations . 32

5.3 Integration of cython . 34

6 Evaluation 35

6.1 Is the inference model generalizable? . 35

6.2 Performance validation . 37

7 Conclusion 39

Bibliography 40

Annex 44

A Annex: Code availability 45

B Annex: Lithops configuration 47

List of Figures

1.1 Schema of a common serverless architecture in public cloud providers. 3

1.2 Shuffling in MapReduce model vs shuffling in a serverless MapReduce. 9

4.1 Graphical representation of the groupBy algorithm. 18

4.2 Execution flow of the groupBy operator. 18

4.3 Memory usage in the groupBy using views and permuting rows. 27

4.4 Load-balance analysis for the hash partitioning. 29

5.1 Execution flow of Lithops. 31

6.1 Empirical vs theoretical groupBy time results for the 5.1GB dataset 36

6.2 Empirical vs theoretical groupBy time results for the 19.7GB dataset 37

xiii

xiv LIST OF FIGURES

List of Tables

1.1 Function as a Service (FaaS) and shared object storage options for some of the

leading cloud providers. 5

4.1 Throughput and bandwidth measurements between IBM Cloud Functions and

IBM Cloud Object Storage in us-east. Ops: operations per second. 22

4.2 asyncio vs threading vs sequential I/O performance. 24

4.3 pyarrow vs pickle performance. 25

6.1 groupBy performance with large scale datasets. 38

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Big data analysis in the Cloud

Big Data is omnipresent in present-day industry and research. The arises of the Internet

of Things (IoT) and the smart devices or the rapid escalation in the resolution of research

equipment have vastly increased the data volumes available. Nowadays, big data is used within

social networks, healthcare systems, retailing companies and even governments [32]. Not only

from a research and development perspective, but also economically, the presence and the

potential of Big Data is immense. In 2020, the Big Data market was forecast to produce

more than US$121.4 billion[39]. Data volume, or the quantity of information, however, is not

separately sufficient for the development of more intelligent and precise systems. Its gathering,

storage, analysis and utilization are essential for taking advantage of Big Data[41].

The behavior of current systems is far from being homogeneous. In real-time applications, data

flows vary in size, latency and continuity. The format of datasets is also greatly variable, and

so is their volume, ranging from MB to even PB magnitudes. For instance, Walmart generates

data from customer transactions at a rate of 2.5 PB of data per hour[39]. Hence, the processing

of big data requires great scalability, flexibility and performance. Traditional technologies fit

poorly in such scenario, due to limited storage capacity and explicit and costly management of

resources. Fortunately, in synergy with the enlargement of data volumes, the development of

cutting-edge technologies have boosted and broadened the tools available for their analysis.

Distributed and scalable systems are crucial for the appropriate manipulation of Big Data, and

Cloud computing suits utterly such preconditions. Cloud computing encompasses web applica-

tion, software and hardware services that are provided through the Internet, remotely accessed

1

2 Introduction

by the user and typically hosted in data centers [16]. Specially public clouds, which make re-

sources available on demand, establish a suitable context for big data processing and analysis.

Since the appearance of first cloud services, the cloud computing paradigm has evolved, and

now providers implement shared pools of heterogeneous computing resources, with extensive

catalogs of inter-connectable and distributed services [39]. Services are classified into types

based on their scope and the resource they provide.

� Software as a Service (SaaS): Frameworks or web applications for data processing

and analysis, maintained by the cloud provider.

� Platform as a Service (PaaS): Application development and deployment frameworks,

with the infrastructure being managed by the cloud provider.

� Infrastructure as a Service (IaaS): Configurable resources, such as servers, storage

systems or networks.

Big Data Cloud architectures typically integrate resources of the different categories vertically

or modularly; one can provision or release resources on-demand, and build complex systems

capable of scaling horizontally based on workload sizes and latencies. By virtue of its flexibility,

cloud computing has naturally housed big data processing. From a pure theoretical perspective,

big data has been defined with ”five V’s” -Volume, Variety, Velocity, Value and Veracity- based

on its characteristics and challenges [24]. All of the 5 V’s are addressed with the features of

cloud computing technology [41].

1. Extensive pooling of computing resources: permits the horizontal escalation de-

pending on the volume of the data.

2. Elasticity: cloud systems can rapidly adapt to input volumes and types through fast

incorporation of resources.

3. On-demand provisioning: the user is offered a broad window to decide the amount of

resources, the usage limits and the output format of the systems.

4. Self-service: variety and veracity of big data can be administered by choosing the ap-

propriate resources for each case from the cloud provider catalog.

5. Billed according to resource reservation: the analysis resolution, the performance

or the capacity of the system can be adjusted adapting the resource provisioning to the

budget of the user.

1.2. FaaS for user-friendly Cloud computing 3

1.2 FaaS for user-friendly Cloud computing

Cloud computing definitely provides enough scalability and flexibility for Big Data workloads.

Unfortunately, many cloud users are not capable of exploiting the Cloud to the maximum, or

even making an efficient use of it. Cloud computing in public clouds involves selecting resource

type, size and number, setting up clusters and administrating costs, besides that Big Data

jobs are usually embarrassingly parallel and hard to optimize. The classical Cloud computing

approach, also known as serverful cloud computing [26], entails such complex management tasks

that narrow the usability of the Cloud. Yet, giving accessibility to Cloud computing is the way

to interdisciplinary collaboration, one of the leading initiatives of Big Data in research[41].

The collaboration between domains is necessary for a cohesive analysis of Big Data and a

coordinated development of universal knowledge, but not even close to all data analysts or

computer scientists have a sufficient level of expertise in the cloud. The implementation of high-

level cloud computing frameworks, masking the inner technical complexities of cloud systems,

is key to keep up with the exploration of Big Data.

Figure 1.1: Schema of a common serverless architecture in public cloud providers. VM: Virtual
Machine. VPC: Virtual private Cloud. FaaS: Function as a Service. BaaS: Backend as a Service.
(based on [25, 38]).

4 Introduction

As both a response to serverful computing and an evolution of cloud computing emerges the

serverless cloud computing. The serverless paradigm hides ”low-level” cloud platform services

from the user (such as virtual machines or networks) and brings higher level development

abstractions [38]. Behind the curtain, serverless environments rely on warm pools of virtual

machine instances on multi-tenant physical servers[26] (see Fig. 1.1). Users, per contra, can

work free from resource management issues. The serverless paradigm relies on the following

principles [26, 38].

1. Resources scale rapid and automatically. Storage and computation resources are decou-

pled, and their billing and scaling is independent.

2. Users only provide the code to execute, and it is the cloud provider which performs the

resource provisioning automatically.

3. The billing is performed in a pay-as-you-go manner, that is, resources are charged a

posteriori, based on their usage, and must not be previously allocated.

Cloud functions, named Function-as-a-Service (FaaS), are the basic and general purpose unit

of serverless environments. In the FaaS model, the user can deploy code that is executed

in isolation at automatically provisioned, remote and virtual containers. Cloud functions are

stateless and their runtime memory and execution time are limited. Users can configure some

features about Cloud Functions, such as the maximum execution time, the available physical

memory or the libraries of a custom runtime environment, under certain limits. Along with

FaaS, serverless environments are composed of a set of specific Backend-as-a-Service (BaaS)

utilities (Fig. 1.1). BaaS provides higher level utilities to substitute server-side components

and bring development closer to the front-end [31]. BaaS offerings include, for example, cloud

storage, key-value database and authentication systems 1. Integrating FaaS and decoupled

BaaS utilities allows the development of automatically scalable systems that can be charged

only based on usage.

Today, most cloud providers include cloud functions in their catalog (See Tab. 1.1) and their

elasticity is greatly appreciated in online commerce and media providers. For instance, Expedia,

with 1.2 billion requests per month, Thomson Reuters, with 4000 requests per second, and Vevo

[23], among others, have integrated serverless functions into their systems.

1There is an increasing offer of fully managed BaaS utilities for custom code execution, such as IBM Cloud
Code Engine [5] or Google Colab [4].

1.3. Data analysis in the Cloud 5

Cloud provider FaaS Shared object storage

Amazon Web Services (AWS) AWS Lambda Simple Storage Service (S3)
IBM Cloud IBM Cloud Functions Cloud Object Storage (COS)
Microsoft Azure Azure Functions Blob
Google Cloud Platform Google Cloud Functions Google Storage
Alibaba Cloud Function Compute Object Storage Service (OSS)
Oracle Cloud Oracle Functions Oracle Cloud Infrastructure (OCI)

Table 1.1: Function as a Service (FaaS) and shared object storage options for some of the
leading cloud providers.

As mentioned earlier, data-analysis pipelines involve embarrassingly parallel workloads, with

highly variable scales of parallelism. To support fluctuating parallelism levels elastically, we

need a system with great scalability, short startup time and fast process deployment. FaaS seem

appropriate for such scenario. On the one hand, they offer the possibility of invoking a large

number of functions (up to 1000 parallel functions for IBM Cloud Functions (CF) and AWS

Lambda, with a standard account). On the other hand, cloud functions suffer from lower cold

start times than VMs, thanks to microVMs and technologies like Firecracker (in AWS Lambda)

[17] and warm pooling of VMs [26]. FaaS are particularly interesting for Big Data pipelines

with disparate data magnitudes at different stages. In such scenario, allocating VMs for the

most demanding stage could imply over-provisioning resources, and consequently, paying for

services that remain idle for a great part of the execution time. FaaS elasticity, instead, could

adjust the necessary number of cloud functions for each stage, avoiding needless billings for

unused resources.

It is not only on paper that serverless fits modern data analysis. Previous research has proven

the feasibility of using the FaaS model to solve real research problems. Geospatial data analysis,

which remains a challenging big data domain -due to its sheer learning curve, implementation

complexity and data size- [41], has been successfully tackled with serverless functions [19].

Bioinformatics can also be ported to serverless architectures, with precedents in proteomics

[29] and metabolomics [37].

1.3 Data analysis in the Cloud

The number of available data analysis frameworks is large, and practically all of them are

designed for the distributed computing of data. Even computing languages with data analysis

features, such as R [11], have been enhanced with distributed data parallelism libraries [32].

6 Introduction

With the raise of Big Data and cloud computing, many distributed frameworks have been ported

to the Cloud. Users can provision resources and deploy their own data analytics system. As

an alternative, cloud providers also include data processing and analysis Platform-as-a-Service

(PaaS) utilities in their catalog, such as AWS EMR [1].

Spark [42] is arguably the most common and extended distributed data analysis engine. It is

built on the MapReduce execution model [20] and provides SQL-like queries through its module

Spark SQL. The MapReduce paradigm was originally designed for processing large data volumes

in parallel, using distributed systems. On its basic it is composed of two following stages.

� map: A set of parallel workers is called (the mapper functions). Each mapper reads a set

of entries from the input data of key-value type, and filters and/or applies a transformation

function to the data. The output of each function is transferred to a shared file system.

� reduce: A second set of parallel workers is called (the reducer functions). Each reducer

reads a set of keys from the mappers’ output, applies a reduction function to its data and

writes the output to the shared file system.

Despite its usability, Spark must be deployed by the user on the Cloud, with its corresponding

management tasks. For example, it relies on a Java Virtual Machine (JVM), and reaching

an efficient compromise between the JVM heap and the operating system installation is not

straightforward [25]. Even for broadly adopted platform as Spark, we face complex adminis-

tration tasks that hinders its usage in the Cloud, and once again, we fall into accessibility and

transparency flaws. Inspired by the limited usability of the Cloud, some proposals have ported

data analytics to serverless environments, primarily through the MapReduce model (or solely

the map stage of the model) [25, 36, 34, 30, 40]. Serverless data analytics frameworks abstract

cloud functions as workers, analogously to the nodes of a cluster. Generally, they act as a high-

level wrapper for FaaS services, with intuitive programming languages like python: the user

specifies the number of workers, writes its custom map, and if applicable, reduce functions and

the framework is responsible for invoking cloud functions in the correspondent FaaS service.

1.4. Towards automated, I/O intensive workloads in serverless environments 7

1.4 Towards automated, I/O intensive workloads in server-

less environments

Cloud functions provide fine-grained billing in data analytics workloads, avoid over-provisioning

resources and ease the usage of the cloud. However, everything is not bright for the FaaS. Due

to their stateless nature, point-to-point communication between serverless functions is not

possible. Hence, intermediary services are necessary for the coordination of FaaS applications.

Essentially, for two functions to communicate with one another, the first must write a message

into a shared storage, and the second must actively read it through polling. Alternatives do

exist, for example, invoking functions with custom triggers on shared storage writes [15] or

direct communication with the hole-punching technique [40]. Nonetheless, such implementa-

tions require higher-level management and resource provisioning by the user, which contradicts

serverless ’ promises of transparency and usability.

The näıve engine for the inter-function communication, but also the most comfortable for the

end-user, is the use of shared object storage systems (SOSS). SOSS are high bandwidth, low-

priced distributed storage systems available at most, if not all, cloud providers (see Tab. 1.1).

Internally, they manipulate data as distinct units, each consisting of metadata and a set of

fixed size blocks, similar to regular file systems. The provisioning and usage of SOSS tend to

be straightforward, only requiring an identification key and a simple API or a Web Console for

their management, so they are specially interesting for transparency.

As they are oriented to the medium and long-term storage of information, SOSS provide persis-

tence but suffer from high latency in their operations. Thus, they are not the optimal option in

terms of performance, specially in I/O-intensive workloads. Various proposals use Redis [12] as

the intermediate storage system [34, 35]. Redis is an in-memory data store based on key-value

hash tables, and it provides low latency I/O operations, unlike SOSS. Although using Redis

raises the performance of serverless applications, in-memory storage cloud services are more

expensive that SOSS, and their provisioning requires greater user manipulation. In our will to

achieve fully transparent cloud usage, SOSS are presumably a more appropriate option.

Exploiting transparency with SOSS in detriment of performance aggravates I/O-intensive steps

of serverless workloads and makes them a bottleneck for the overall performance. The worst

case would be the all-to-all shuffling between functions. In the MapReduce model, an all-to-all

shuffling implies communicating every mapper function with every reducer function (see Fig.

1.2 (A)), while conserving the volume of the input data (no filtering or reduction is applied

8 Introduction

at the map stage). All-to-all shuffling is part of many data analysis queries, to say, sort,

groupBy or Spark’s repartitionBy, and represents a limiter in terms of performance because

communications between workers increase quadratically with respect to the number of workers.

In a serverless MapReduce implementation with SOSS as intermediary (see Fig. 1.2 (B)) such

problems are exacerbated, due to high latency requests.

Therefore, steps with all-to-shuffle constrain multi-stage serverless data analysis workloads. As

the number of requests increases exponentially with the number of workers, choosing the optimal

worker number for each case is fundamental to minimize execution time and consequently

decrease the pay-as-you-go billing of the analysis. However, serverless frameworks have not

still integrated the capacity of automatically choosing the optimal number of workers for each

workload, and it is the user who has to indicate the level of parallelism. Being realistic, the

vast majority of not specialized cloud users would not be able to determinate a close to optimal

scale of parallelism based on the data to analyze. Hence, roviding a framework that automated

the number of cloud functions to use based on the job features would be a great step towards

democratizing the usage of the Cloud for general users.

1.5 Contribution

In the present document, we present the following contributions.

� We generalize an analytical model, proposed in our precedent work [21], to infer the

optimal number of workers for general all-to-all shuffle operations in environments with

uncoupled computation and storage.

� We present an efficient groupBy operator for serverless architectures.

� We propose and validate a set of optimizations for distributed data analytics in cloud

functions.

1.5. Contribution 9

(a)

(b)

Figure 1.2: (A) All-to-all shuffling in the theoretical MapReduce model. (B) All-to-all shuffling
in a serverless MapReduce, using a shared object storage system as communication interme-
diary. In the serverless MapReduce, the number of intermediary files in the storage system
and the number of GET and PUT requests grows quadratically with respect to the number of
workers.

10 Introduction

Chapter 2

Related Work

The idea of tackling data analysis with FaaS is not new. Pywren first, with AWS Lambda [25],

and later Lithops, with IBM Cloud Function [36], have adapted the MapReduce model to be

run over FaaS using high-level programming languages. They both provide map calls to process

an iterable object across cloud functions using data-level parallelism. Lithops outperforms

Pywren in functionalities, giving support to custom runtime configuration and simple multiple-

map single-reduce jobs among other features. In addition, it has been recently upgraded with

more complex interprocess communication objects using Redis and transparent multi-cloud

access [35]. Crucial [18] and gg [22] also focus on serverless analytics from different approaches.

However, neither of the frameworks implements general purpose shuffle operation, and choosing

the number of workers to use still corresponds to the user.

Some proposals include serverless environments with inherent all-to-all shuffling support, but

partially built on serverful components. Pocket [28] implemented an elastic and automated

serverless storage system on top of VMs. Maybe the closest option of transferring Spark to the

serverless would be Flint [27], which adapted Spark execution plans to AWS Lambda and gave

the possibility of running PySpark over FaaS. In the case of Flint, shuffling was performed on

AWS SQS, a poorly scalable message queuing service.

Specific research on serverless shuffling also falls into not transparent solutions. Locus [34]

implemented a greatly scalable sort with good performance integrating low latency (Redis,

through AWS ElastiCache) and high latency (SOSS, with AWS S3) storage systems. For the

first time, it included an analytical model to predict the theoretically optimal number of workers

for the serverless shuffling, but forced the user to allocate Redis servers manually. Lambada

11

12 Related Work

[30] offered a shuffling operator with a completely serverless architecture, but did not infer the

optimal scale of parallelism automatically.

Boxer [40] is the most recent solution addressing the communication between cloud functions.

Boxer implements point-to-point communications between functions using a TCP/IP protocol

and the hole-punching technique, with good performance results in the TPC-H benchmark.

Nevertheless, it depends on an external coordinator for the hole-punching, such as a a VM,

and does not give detailed information about its performance in all-to-all shuffling operations.

Caerus [43] extends Locus with task scheduling and pipelining to minimize job cost and execu-

tion time, but as Locus, lacks enough transparency for users with no cloud expertise.

In our precedent paper, Primula [21], we integrated transparency and a fully serverless architec-

ture in a single framework. Primula presented a FaaS+SOSS sort primitive and the capability

of automatically infering the scale of parallelism for each job, responding to the shortfalls of

the existing proposals.

Chapter 3

Planning

3.1 Objectives

We focused the present research as a generalization of our previous paper, Primula [21]. The

main objectives for the final results were the following.

1. OM1: Concordance between our theoretical predictions and the results for the groupBy

operator.

2. OM2: Improvement of our benchmarked results over Primula.

To tackle our main objectives and plan our milestones, we set the following secondary objectives.

1. OS1: Obtain no greater execution times for our new groupBy operator than those for

Primula’s sort with the same medium scale datasets. The improvement margin is modest

with medium scale datasets, so the optimizations resulted from our work should at least

give the same execution time for the sort and the groupBy.

2. OS2: Execute the 100GB Terasort [33] with lower execution time than Primula. We set

the 100GB Terasort as our main benchmark for the performance of our final implementa-

tion because (i) it is an standardized benchmark addressed in many previous papers (ii)

its scale is sufficiently big to constraint its execution in general purpose devices, so it is a

good option to be executed in the Cloud.

13

14 Planning

3. OS3: Decrease memory utilization in cloud functions. Using less memory per function

increases the range of partition sizes that can be assigned per worker.

3.2 Development scheme

Our development followed an iterative pattern. On its basic, each iteration had a related task

(see the next section) and consisted on the following steps.

� Research: We studied the existing bibliography on the specific task to address. We

consulted both academic publications and informative articles. For journal articles, we

gave preference to journals at the first quartile of computer science-related domains (based

on the Journal Citation Report (JCR) 1), or alternatively, highly cited articles in Google

Scholar 2 and the Web Of Science 3. For congress publications, we considered congresses

with at least A or A* score in the CORE ranking 4.

� Implementation: We implemented different options for the correspondent task.

� Evaluation: We evaluated the correct functioning of our implementations. We tried to

minimize the executions in the Cloud to avoid needless billings, so we first executed every

extension locally with threads instead of cloud functions and an abstraction of IBM COS

over the local file system. Once ensured the results were correct, we executed small-scale

experiments on the Cloud (150MB maximum dataset size).

� Validation: The perfect validation per iteration would be checking the completion of

OS1 and OS2. However, as the execution of the 100GB Terasort benchmark (OS2) in

the Cloud is too costly to be repeated at each iteration, we decided to only perform its

evaluation after the final iteration. Experiments from OS1, instead, are more affordable

and can be repeated with relative frequency. We decided to use the condition from OS1

as our evaluation method at each iteration. Also, each task had its specific validation

method, which we present in the 4 chapter (for instance, using Python’s memory-profiler

to monitor memory optimizations).

1JCR impact search: https://www.recursoscientificos.fecyt.es/servicios/indices-de-impacto
2Google Scholar: https://scholar.google.com/
3Web Of Science: http://wos.fecyt.es/
4CORE Conference Portal: http://portal.core.edu.au/conf-ranks/

https://www.recursoscientificos.fecyt.es/servicios/indices-de-impacto
https://scholar.google.com/
http://wos.fecyt.es/
http://portal.core.edu.au/conf-ranks/

3.3. Task definition 15

3.3 Task definition

We divided our planning into the following incremental tasks. For each tasks, we performed

the steps described above.

T1: Basic groupBy implementation.

The goal was to implement a näıve groupBy based on the MapReduce model, using IBM Cloud

Functions as the computation engine and IBM COS as the storage system.

T2: Exchange algorithm optimizations.

The goal was to improve the communication between the map and reduce stages of the execu-

tion, studying the best option for concurrent I/O.

T3: Intermediate data optimizations.

The goal was to find the best data format for intermediate files in the shuffle, concerning

complexity, memory usage and in/out transformation performance.

T4: Memory usage and groupBy algorithmic optimizations.

We intended to find additional optimizations for the code in terms of efficient memory usage.

For that, we studied different options for the inner functioning of the groupBy and the best

model for data management.

T5: Additional performance optimizations.

For our final goal we tested code optimizations such as using compiled languages for certain

sections, instead of Python.

16 Planning

Chapter 4

Design and architecture

4.1 groupBy operator

Grouping data by key is a common operation is data analysis, and every major data analysis

framework provides a groupBy operator (so is the case, for example, of Spark [42], R [11] or

Python’s pandas [8]). It is included in performance benchmarks such as TPC-H [14] (query

3, for instance) and TPC-DS [13] (query 1, for instance). In a general groupBy operation,

input data entries are arranged into groups based on certain criteria. For research purposes,

we simplify such definition to the most common case of groupBy, in which rows with the same

key are grouped together. The algorithm receives the name of the attribute to use as the key,

and rearranges the entries to put those with the same key into the same group. The output is

a set of groups, each with all the entries with for a certain key (see Fig. 4.1).

4.2 Integration of the groupBy with previous contribu-

tions

We propose a groupBy operator as an extension of our previous work, Primula [21]. In Primula,

we presented a simple and standalone primitive in Python to sort a cloud-hosted dataset au-

tomatically. Primula’s sort primitive decoupled the average cloud user from the responsability

of specifying the number of functions to use in a shuffle workload. The execution flow of our

groupBy operator is depicted in Fig. 4.2. Basically, the user only needs to specify the path of a

17

18 Design and architecture

Figure 4.1: Graphical representation of the groupBy algorithm.

dataset in the Cloud and the column on which the grouping is applied, and it is the framework

which orchestrates the whole groupBy job. To give a honest continuation to our research, we

maintain the base cloud services used in Primula; IBM Cloud Functions as our FaaS and IBM

Cloud Object Storage (COS) as our SOSS.

Figure 4.2

In the following sections we briefly mention the contributions and features included in the

original Primula paper, and we describe how we have included them in our present study.

4.2. Integration of the groupBy with previous contributions 19

4.2.1 Grouping with the MapReduce algorithm

Our adaptation of the MapReduce model to the serverless sort comprised two preliminary

stages and the sorting stage per se. First, a parser function performed a characterization of the

dataset properties, extracting characteristics such as the data types, or the delimiter, in the

case of tabular data. Then we executed a random sampling and finally the MapReduce sorting

job, embodying every mapper and reducer in single cloud function.

For the groupBy problem, we reuse the initial parser function to characterize the dataset and

we then call the grouping job directly. As in Primula, each of the mappers and each of the

reducers is assigned to a cloud function. We take Spark’s groupBy operator as the reference

algorithm for our implementation. For the following explanation, we will assume we are using

N mappers and M reducers for the groupBy execution, and the input dataset has size S.

1. We define N equidistant ranges in S, so that each range covers S/N bytes of data. We

will call such ranges partitions. Each mapper reads its corresponding partition of the

dataset from the Cloud.

2. To determine the destination reducer of each of the keys in their partition, mappers apply

a hash partitioning to the keys to obtain an integer value H. The target reducer for each

key will be H mod M . As every mapper uses the same hashing algorithm, a certain key

will be directed to the same reducer in every function.

3. Each mapper writes an intermediate file per reducer into the SOSS, containing all the

entries in its partition corresponding to that reducer. There will be M intermediate files

per mapper, and N ×M in total.

4. Each reducer reads its corresponding intermediate files from the SOSS, and binds them.

Finally it regroups the entries based on the keys, setting all the entries with identical key

into the same group.

5. If executed segregated, groupBy algorithm finishes with each reducer writing the group

for each key into the SOSS.

4.2.2 Granulated I/O

High latencies of SOSS requests contribute negatively to the shuffle performance. Most storage

systems have an optimal transfer size for their I/O requests, that hinges on the storage system

20 Design and architecture

architecture, its network context and its internal management of data blocks. We adopted the

bandwidth experiments performed in the Pywren paper [25] for AWS S3 and adapted them for

throughput measurements. Our evaluation covered chunk sizes in the range of [8, 128]MB, and

determined that 64MB is the optimal chunk size for IO operations between cloud functions and

IBM COS, both in terms of bandwidth and throughput. Our framework fragments every I/O

operation in 64MB chunks to improve data exchange operations.

4.2.3 Barrierless execution

The original MapReduce algorithm [20] executed the map and reduce stages synchronously,

that is, reducers where not invoked until all mappers finished their corresponding tasks. In an

all-to-all shuffle context, it is not necessary for all mappers to finish to start the reduce stage,

as reducers can start reading intermediate files even from the termination of the first mapper.

We remove the barrier between the map and the reduce stages, and invoke the reducers when

a percentage P of mappers have finished their tasks. Based on empirical analysis, we have set

P to 20%. Overlapping mappers and reducers this way improves execution time in two ways.

� Eliminates unnecessary delays in reducer invocation.

� As we will mention in the following sections, we have optimized Primula with concurrent

I/O operations for intermediate files. Launching the reducers before the termination of

all the mappers avoids all the intermediate files to be transferred concurrently, saturating

the SOSS and degrading the overall performance. Asynchronous execution dilates the

read of the intermediate files in a wider time lapse, without altering the total execution

time.

4.2.4 Speculative execution

In any distributed and highly parallel workloads, outlier functions with abnormally high ex-

ecution times (known as stragglers) can appear, even if their tasks are load-balanced,. Such

functions may emerge due to hardware issues, network congestion or byzantine faults. In Prim-

ula, we implemented a straggler mitigation system using speculative execution. A specific

monitor functions tracks all the functions in a job, and each of the function communicates its

progress in real time through COS. When a relatively slow function is detected, an equivalent

function is launched with the same input and output parameters.

4.2. Integration of the groupBy with previous contributions 21

4.2.5 Inferring the optimal level of parallelism

As the data exchange step is the bottleneck for most data analysis operation involving an all-

to-all shuffle, we can minimize execution time by determining the optimal scale of parallelism

of the shuffle. Optimizing the shuffle implies reaching a compromise between bandwidth and

throughput limits of the storage system. In Primula we proposed an analytic method for the

optimization task. We developed a mathematical model to predict an approximation for the

shuffle time for a certain configuration. We will not get into details about the model assumptions

and limitations, as they are already explained in our previous paper. Basically, we infer the I/O

time of mappers and reducers (eq. 4.1). D is the size of the dataset in bytes. p is the number

of workers in a single stage. bw and br are the cloud functions-SOSS bandwidth limits for

writing and reading, respectively, in bytes per second. qw and qr are the cloud functions-SOSS

throughput limits for writing and reading, respectively, in operations per second. c is the I/O

chunk size, in bytes.

Tsort(p) = Tmap(p) + Trdc(p) (4.1)

For each approximation, we calculate the throughput-limited and bandwidth-limited I/O times,

an consider the maximum of the both. In plain words, we determine if each operation is

constrained by the cloud functions-SOSS throughput or the bandwidth. Eqs. 4.2 and 4.3

approximate the I/O time for the map and reduce stages, respectively.

Tmap(p) = max

 D

br × p
,

⌈
D
c×p

⌉
p

qr

︸ ︷︷ ︸
Reading of input share

+ max

 D

bw × p
,

(⌈
D

c×p2

⌉
p2
)

qw

︸ ︷︷ ︸
Writing of intermediate data

. (4.2)

Trdc(p) = max

 D

br × p
,

(⌈
D

c×p2

⌉
p2
)

qr

 +

︸ ︷︷ ︸
Reading of intermediate data

max

 D

bw × p
,

⌈
D
c×p

⌉
p

qw

︸ ︷︷ ︸
Writing of processed data

. (4.3)

To measure bandwidth and throughput values, we evaluate the aggregate number of 64MB

GET and PUT operations that can perform an increasing number of workers in a time lapse.

22 Design and architecture

Once we reach a peak and results decrease, we retain the maximums as our bandwidth and

throughput values. For the experiments in this document we used the results in Tab. 4.1.

Bandwidth Throughput

GET requests 20.75e3 MB/s 342.19 Ops

PUT requests 23.30e3 MB/s 364.04 Ops

Table 4.1: Throughput and bandwidth measurements between IBM Cloud Functions and IBM
Cloud Object Storage in us-east. Ops: operations per second.

This work aims to validate the applicability of purely serverless architectures on Big Data anal-

ysis. In data analysis pipelines, several queries or transformations are concatenated traversing

multiple data exchange steps. The volume of data between steps is also variable. For example,

the TCP-DS query 94 involves 8 steps, with input data of each step varying between 0.8MB and

66GB [34]. A model that measures the shuffle time in isolation, as an autoconclusive operation,

does not properly fit such context. In a data analysis pipeline, it would be of greater interest

to infer the number of workers at each step in real time, adjusting the number of workers

dynamically based on the data volume to exchange.

We complement Primula’s automatic inference system to model only the shuffle stage, excluding

the initial read of the input and the final write of the output. Removing the leftmost term of eq.

4.2 and the rightmost term of eq. 4.3 we get an alternative model that only considers the I/O

of intermediate data, in a conceptually analogous way to the original. Eq. 4.4 approximates

the intermediate data write time for mappers and eq. 4.4 approximates the intermediate read

time for reducers. Substituting both expressions in eq. 4.1 we can foresee the execution time

of the all-to-all shuffle.

Tmap(p) = max

 D

bw × p
,

(⌈
D

c×p2

⌉
p2
)

qw

︸ ︷︷ ︸
Writing of intermediate data

. (4.4)

4.3. Improving I/O performance 23

Trdc(p) = max

 D

br × p
,

(⌈
D

c×p2

⌉
p2
)

qr

︸ ︷︷ ︸
Reading of intermediate data

(4.5)

Our framework resolves both equations on the fly before each execution, searching a time mini-

mum across the range of possible scales of parallelism. The resolution is performed immediately,

without the involvement of the user. Base throughput and bandwidth values are calculated

automatically before the first usage of the system in the user machine, and the obtained pa-

rameters are saved in a local file for posterior execution.

4.3 Improving I/O performance

We put great effort on improving the performance of the all-to-all shuffle, a common bottleneck

for big data analysis pipelines. Our I/O optimizations address two aspects of function commu-

nication: performing concurrent requests from each client in an efficient manner and digging

into the most productive data formats for the intermediate data exchange.

4.3.1 Concurrent I/O

IBM Cloud Functions, as AWS Lambda, increases the number of CPUs available by a cloud

function in proportion to the allocated runtime memory. From an architecture perspective, it

would be perfectly feasible to run multiple simultaneous threads inside an IBM Cloud Function.

In Python programs, this possibility is restricted by the Global Interpreter Lock (GIL). The

GIL is part of CPython, the standard Python implementation, and ensures that only one thread

is executed at a time in a Python program. The reasons for the implementation of the GIL are

diverse; gives better performance than fine-grained blocking for single-threaded applications

and thread-unsafe C extensions are easier to integrate, for example. It is a constraint for CPU-

bound multi-threaded applications in favor of single-threaded ones. I/O bound programs can

exploit the advantages of threading though, as Python forces the thread switch at blocking

operations such as I/O operations. This way, we can overlap the execution time of several

threads, switching the CPU across threads as they get blocked in their I/O requests.

24 Design and architecture

The näıve option for multi-threaded applications in Python is the threading library. threading

allows the execution of a pool of threads orchestrated by the operating system. Although I/O

performance can be improved, threading still carries some drawbacks that avoids reaching

the maximum efficiency. First, threads are managed by the operating system explicitly, which

appends thread coordination overhead to the execution time. Second, the operating system

can switch between threads even if the one owning the CPU has not started a blocking request,

through preemptive multitasking.

asyncio is an alternative library for concurrent execution in Python, that runs multiple tasks

(called co-routines) in a single thread. It is based on a main event loop. Co-routines queue

events as they progress, and when the current co-routine gets blocked the event loop switches

to the first thread that queued an event. Co-routines communicate events at their start and

after finishing a blocking call. asyncio reduces the thread-management overhead, makes a

more efficient scheduling of concurrent tasks and, as co-routines are lighter than real Python

threads, decreases the startup time of concurrent section of code.

Implementation Reading Writing

asyncio 3.138±0.274s 5.506±0.133s

threading 3.454±0.117s 6.580±0.182s

sequential 6.027±0.331s 9.748±0.637s

Table 4.2: asyncio vs threading vs sequential I/O performance. We performed the evaluation
in us-east, with a single cloud function per execution and 3 replicas.

We evaluated the time it takes for a IBM Cloud function to read and write 10 objects of 64MB,

in a sequential implementation, with threading and with asyncio. asyncio overcomes the

performance of threading in a 9.1% in the reading and in a 16.3%. Although the improvement

may seem humble, we must consider that the evaluation was performed with only 10 concur-

rent tasks (one per file), and the superiority of asyncio should be reinforced as the scale of

concurrency increases.

4.3.2 Optimizing intermediary objects

pandas [8] dataframes are the core data structure of our framework. However, we evaluated the

possibility of using distinct data formats for the intermediary objects of the shuffling. Parquet

[2] is a columnar storage data format adapted to big data volumes, unlike CSV, a row-based

4.3. Improving I/O performance 25

format. Its performance stands out specially with complex data and structured datasets with

non-primitive or lax size data types. In Python, support to the parquet format is given through

Apache Arrow’s pyarrow [9] library.

Apart from choosing performant data formats, we have also focused on reducing the volume

of data transferred in the shuffle. From different data compression techniques, pyarrow’s in-

tegrated snappy returned the best results in terms of compression time. We compared the

performance of three technologies for our intermediate data, looking at the transformation time

from a pandas dataframe and the size of the resulting bytes object: Python’s pickle library,

pyarrow’s sole parquet conversion and pyarrows parquet conversion with snappy compression.

We performed our evaluation onf the Brain02 Bregma1-42 02 v2.csv dataset of 150MB from

EMBL’s Metaspace project [7].

Implementation To pandas From pandas Object size

pyarrow + snappy compression 0.058±0.009s 0.357±0.088s 29085561B

pyarrow 0.073±0.010 0.393±0.082s -

pickle 0.034±0.007s 0.754±0.066s 75657107B

Table 4.3: pyarrow vs pickle performance. Evaluations where performed in a IBM
Cloud Function in us-east, with 5 replicas per measurement. The test dataset was
Brain02 Bregma1-42 02 v2.csv, extracted from EMBL’s Metaspace project [7]. pyarrow was
executed sequentially.

Although pickle outperformed pyarrow in the transformation from intermediate data to

pandas, the difference is negligible in magnitude compared to an speedup of 2.112 in the

conversion from pandas to intermediate data with pyarrow & snappy. In terms of volume to

transfer, the resulting object size decreased in a 160% using the compressed parquet format.

We also evaluated the possibility of performing the conversion between pandas and the inter-

mediate object format (using pyarrow and snappy) inside the asyncio co-routines, or instead

executing the conversion sequentially before the I/O stage and only performing I/O requests

from the co-routines. For a partition size of 1GB per worker, during the map stage, converting

the data sequentially before the I/O stage got an speedup of 1.15 against the concurrent I/O

and conversion. This is coherent with the previously explained GIL limitation, as the conversion

to/from a pandas dataframe is a completely CPU-bound task.

26 Design and architecture

4.4 Memory usage in cloud functions

Memory is a limited resource in cloud functions. IBM Cloud Functions, for instance, can be a

assigned a maximum of 2048 MB runtime memory. In addition, detecting memory overflows in

cloud functions is not always evident, and the logging service can sometimes provide ambiguous

information. An efficient management of the memory usage in cloud functions (a) permits

processing a greater partition in each function, which in some cases can enhance the cost-

effectiveness of an application, (b) diminishes the possibility of running over memory and eases

function monitoring.

Keeping a single dataframe per function an using pandas views for sub-partitioning we avoid

generating needless copies of the data at improve memory management. pandas views return a

shallow copy of the data, that is, a different data object with a pointer to the original object’s

data. Instead of deep copies, which return a completely new and independent object, views

have not own data (except for the metadata about the original data they are pointing at).

Views and the original data are linked: modifications in one instance modifies the other, and

vice versa. In the specific context of pandas the original dataframe and the view dataframe

point to the same underlying numpy array instances.

For our specific groupBy case, we use views both in the map and reduce stages for grouping.

In the mapper, we apply the a hash partitioning algorithm on the keys and we generate a

numpy array with the rows for each of the reducers. Then, per reducer, instead of copying its

assigned data to generate its intermediate files, we extract a view of the original dataframe

with its corresponding entries, and we serialize the view into the intermediate format. The

main objects in memory at its peak are, thus, only the original dataframe and the intermediate

compressed parquet byte strings.

Using views we can also avoid creating underlying copies of the data. The straightforward

solution for grouping a dataframe is to permutate its rows and rearrange them based on the

grouping criteria. In pandas, permuting the rows of a dataframe internally generates a complete

copy of the dataframe, even if performed in-place. With views, and the system proposed above,

we eliminate every permutation from the process and stick to only the original data.

4.4. Memory usage in cloud functions 27

(a)

(b)

Figure 4.3: Memory usage in the groupBy using views and permuting rows. (a) Results
for a purely views-based implementation. (b) Results for a row permutation-based imple-
mentation. Experiments where executed locally, over a triplicated version of the Metas-
pace Brain02 Bregma1-42 02 v2.csv dataset (450MB), and data was grouped into 10 sub-
partitions. We used Python’s memory-profiler for monitoring memory usage.

We evaluated the performance (in memory usage and execution time) of a groupBy operation

using only views and permuting the data, and demonstrated that a views-based implementation

outperforms dataframe permutation. Both implementations got as input a pandas dataframe

28 Design and architecture

from a triplicated version of the Metaspace Brain02 Bregma1-42 02 v2.csv dataset (450MB).

They performed the partial grouping of the map stage, grouping the keys using hash partitioning

into 10 sub-partitions, and serialized every sub-partition into the intermediate compressed

parquet format. The views version calculated the destination sub-partition for each row, and

serialized a view of the data for each sub-partition with its corresponding rows. The permutation

version permuted the dataframe so that entries with the same destination remained adjacent,

extracted a view for each sub-partition (unlike the views version, it was composed of consecutive

rows) and serialized it.

We executed the experiment locally, and executed the grouping five times per implementation.

The pure views version got an average execution time of 6.488s, whereas the permutation

version got 8.986s. We profiled the memory usage of both implementations using Python’s

memory-profiler package [6]. Regarding memory consumption, the pure views version shows

a maximum memory peak slightly over 800MB, whereas the permutation version surpasses

1000MB memory usage (Fig. 4.3).

4.5 Using compiled code.

CPython can be extended with C-like compiled code extensions using the cython library [3].

Compiled code is specially interesting for CPU-bound tasks with primitive types and basic data

structures. We use a cython routine for the hash-partitioning algorithm. Hashing is a relatively

heavy operation in computational terms, and hashing an array of keys iteratively in high-level

languages like Python can be a burden for performance. We considered and compared different

alternatives for the hashing. As pandas columns are internally numpy arrays, we could use

numpy utilities, which are frequently based on compiled code, to boost performance. numpy

provides the capability to vectorize an scalar function to work on full arrays, and functions like

apply along axis to apply a scalar function over the elements of the array. Also, we considered

using compiled hashing implementations instead of high-level alternative. We evaluated the

alternatives on different size and data type key arrays and observed that using compiled code

with Python’s default hash function gave the best performance.

Python’s hash implementation is derived from object ids, a unique identifier that is given to

every object and that is not changed during its lifetime [10]. To validate that our chosen hash

function does not generate excessive collisions and that data is distributed equitably across

reducers, we evaluate the read (reducers) and written (read) data volume in the shuffle. We

4.5. Using compiled code. 29

use two Metaspace datasets of 5.1 and 19.7GB respectively, and 400 workers (Fig. 4.4). As

depicted, every reducer reads an comparable size of intermediate data, so we can consider our

hash partitioning algorithm is balanced.

(a)

(b)

Figure 4.4: Load-balance analysis of the hash partitioning: written and read shuffle data volume
per worker in the groupby. (A) CT26 Xenograft (5.1 GB). (B) X089-Mousebrain (19.7GB).
We executed the groupby from a virtual machine in us-east, using 400 workers. Both datasets
were extracted from the Metaspace project.

To mention, we also use compiled code for the conversion from csv to pandas dataframe, using

the integrated C engine in panda’s read csv.

30 Design and architecture

Chapter 5

Implementation

5.1 Base framework

Our project extends the serverless framework Lithops [36, 38]. Lithops provides interfaces to

implement map-like parallel workloads, and is specially suited for data-level parallelism and

embarrassingly parallel jobs. Lithops is currently maintained by IBM1. Figure 5.1 depicts a

diagram of the Lithops execution flow.

Figure 5.1: Execution flow of Lithops (previously IBM-PyWren), extracted from [36].

1https://cloud.ibm.com/docs/codeengine?topic=codeengine-lithops

31

https://cloud.ibm.com/docs/codeengine?topic=codeengine-lithops

32 Implementation

As mentioned in chapter 2, Lithops lacks all-to-all shuffle operators, sort primitives or groupBy

primitives. In Primula [21] we extended Lithops with a shuffle operator and a sort primitive.

For the current work, we augment the interface with an automatic groupBy operator. We take

advantage of Lithops primitives to execute our map and reduc stages, and reuse our barrierless

execution and speculative execution patches from Primula. To demonstrate the simplicity and

transparency of our groupBy call, we include an example snippet in code 5.1. In the existing

serverless frameworks, the user would have to provision resources in advance, write the groupBy

code explicitly and input the number of workers to use. With our Lithops extension, the user

only has to put its IBM Cloud API Keys into the JSON configuration file (see Annex B), call

the groupBy operator and the frameworks completes the workload automatically.

Listing 5.1 GroupBy operation in our framework.

1: # We import our modified lithops library with sort and groupby.

2: import lithops

3: import json

4:

5: config = json.load(open("my config.json"))

6: lh = lithops.ibm cf executor(config=config, runtime memory=mem)

7: lh.groupby("cos://us−east/my−bucket/my−data.csv", primary key column=0)

5.2 I/O and memory optimizations

We intended to keep our I/O implementation simple, to keep to door open to future extensions

of the framework. Codes 5.2 and 5.2 show the code for the conversion from dataframe to

compressed parquet and vice versa. To generate views from dataframes we use pandas’ iloc

accessor, which returns a view of a set of dataframe rows based on their row index. For from/to

parquet conversion we also use pandas’s integrated pyarrow and snappy utilities, the sames

we have used in the evaluations described at chapter 4.

Listing 5.2 Dataframe partitioning using views an conversion to the intermediate byte string

with pyarrow and snappy.

1: # ed is the partition dataframe.

2: # pointers ni contains , from lower bound to upper bound , the row ids

3: # correspondent to a certain reducer.

4: # f is a BytesIO object.

5.2. I/O and memory optimizations 33

5: ed.iloc[pointers ni[lower bound:upper bound]]

6: .to parquet(f, engine="pyarrow", compression="snappy")

Listing 5.3 Read of intermediate compressed parquet data.

1: # Read object is the intermediate byte string wrapped in a

2: # BytesIO object.

3: import pandas as pd

4: df = pd.read parquet(read obj)

In Code 5.4 we show the intermediate data writing process by a mapper using asyncio. As

serializing is performed sequentially before the write operations, we can isolate the I/O portion

of the code, providing modularity and readability for upgrades. We minimize co-routines to

the minimum, only including the I/O call from the IBM COS client and reducing CPU usage.

Listing 5.4 Writing intermediate data with asyncio.

1: # bounds is a list of (reducer id , serialized data , chunk number)

2: # tuples.

3: async def writes(bds):

4: loop = asyncio.get event loop()

5:

6: def write func(Bucket, Key, Body):

7: ibm cos.put object(Bucket=Bucket, Key=Key, Body=Body)

8:

9: objects = await asyncio.gather(

10: *[

11: loop.run in executor(None, functools.partial(

12: write func , Bucket=output bucket ,

13: Key="{}/{}/{}.pickle".format(my output path , b[0], b[2]),
14: Body=b[1]))

15: for b in bds

16:]

17:)

18: return objects

19:

20: loop = asyncio.get event loop()

21: tts = loop.run until complete(writes(bounds))

34 Implementation

5.3 Integration of cython

cython extensions are written in its own pythonish code at .pyx files, which are compiled in

two general steps. In Code 5.5 we show our hash partitioning in cython. First, cython converts

its pythonish code into standard C code. Then, it calls the default C compiler of the system

(gcc, for instance) and performs the compilation the usual way from the source C code.

There are different ways for integrating python libraries with cython code. For consistency and

portability reasons, we decided to extend Lithops with the intermediate C files generated by

cython. We adapted the setup.py file to compile the .c files automatically during the library

installation, according to the system’s architecture.

Listing 5.5 Hash partitioning in Cython.

1: @cython.boundscheck(False)

2: @cython.wraparound(False)

3: def chash(np.ndarray key array ,

4: unsigned int row number , unsigned int reducer number):

5: cdef int i

6: # allocate number * sizeof(double) bytes of memory

7: cdef unsigned int * index array =

8: <unsigned int *> malloc(row number * sizeof(double))

9: if not index array:

10: raise MemoryError()

11:

12: try:

13: for i in range(row number):

14: index array[i] = hash(key array[i]) % reducer number

15: return [x for x in index array[:row number]]

16:

17: finally:

18: # return the previously allocated memory to the system

19: free(index array)

Chapter 6

Evaluation

The evaluation tackles the two overriding aspects of our proposal. First, if our model is capable

of predicting a close to optimal number of workers for the all-to-all exchange operation with an

acceptable error, in the groupBy context. Second, if the performance of the system suits data

analysis. We executed all the experiments from a VM located at us-east, and 2048MB runtime

memory per cloud function.

6.1 Is the inference model generalizable?

Probably the main uncertainty after validating our model for the sort in Primula [21] was its

generalizability to other operations. For two different datasets, we compared the real execution

and shuffle times with different scales of parallelism to their theoretic counterparts using our in-

ference equations. We chose two datasets from the Metaspace project [7], CT26 Xenograft.csv,

of 5.1GB, and X089-Mousebrain 842x603.csv, of 19.7GB.

We calculate the shuffle time of each execution by measuring the time lapse between the first

mapper that initiates the intermediate data writing and the last reducer that reads its cor-

respondent intermediate data. We perform this measurement by making each function signal

its corresponding milestone -start of writing for mappers, end of reading for reducers- with a

unique IBM COS object, and subtracting the time stamp of the latest object with that of the

earliest one.

An important consideration about the results is that our model is not an exact execution

35

36 Evaluation

time predictor, as it does not consider many factors such as computation or intermediate data

serialization. Instead, its objective is to foresee which worker configuration will give the best

performance, in terms of execution time, based on the data exchange.

Fig. 6.1 represents our results for CT26 xenograft. In both time calculations, the theoretical

and empirical number of workers that give minimum execution time coincide. Surprisingly, full

execution time results are more concordant with the theoretic forecast than shuffle results. The

shuffle time does not show great variation for different scales of parallelism, probably because

5.1GB is still a modest size for data analysis and we have not reached IBM COS congestion.

Figure 6.1: Empirical vs theoretical results for the 5.1GB dataset. (A) Results for the total
execution time. We used the complete version of the inferencer equation. (B) Results for the
shuffle time. We used the shuffle-narrowed version of the equation.

Fig. 6.2 represents our results for X089-Mousebrain 842x603. Empirical results show a flat-

tening of the results once a value close to the minimum is reached in execution and shuffle

times. The appropriate scale of parallelism to minimize execution time is predicted correctly.

In the shuffle time, we get an absolute minimum, still similar to the predicted minimum, at 60

workers, more than the predicted minimum point. For a similar execution time, minimizing

the number of cloud functions is favorable to decrease the billing related to function run time,

so we consider the model to be valid also with the 19.7GB dataset.

6.2. Performance validation 37

Figure 6.2: Empirical vs theoretical results for the 19.7GB dataset. (A) Results for the total
execution time. We used the complete version of the inferencer equation. (B) Results for the
shuffle time. We used the shuffle-narrowed version of the equation.

Overall, we see that both prediction models have a good inference capacity. Although the

divergence between the theoretic and the real shuffle and execution times is evident, we insist

on the idea that our model does not intend to reach great precision in its inferenced times.

From a practical perspective, we can affirm than the optimal scale of parallelism determined

by the predictor and the real configuration are sufficiently proximal. We can thus confirm

our hypothesis that the model is generalizable to distinct shuffling operations. Supposing a

future integration of the model into complex data analysis pipelines, as cloud functions can be

launched dynamically at runtime without previous provisioning of resources, we could execute

the model at each shuffle stage and scale the parallelism accordingly.

6.2 Performance validation

To assess the performance improvements consequence of our optimizations, we executed a

100GB Terasort [33] and compared our results with our previous achievements. In Primula, we

accomplished a minimum execution time of 195.4s for the 100GB Terasort with 200 workers.

With the enhancement presented in this work, we achieved a 89.9s performance for the total

execution time and 50.83 for the shuffle time with 225 workers. The execution time speedup

was 2.17.

38 Evaluation

In Tab. 6.1 we include groupBy performance results for large scale datasets, that validate the

applicability of our operator in greater size analytics. Datasets were generated through frag-

mentation of X089-Mousebrain 842x603, replication of fragments and random rearrangement

and concatenation of the fragments.

Dataset size Number of workers Execution time Shuffle time

39.4GB 169 62.304±6.753s 35.261±2.856

59.1GB 225 71.957±5.898 46.497±7.896s

78.8GB 324 87.105±3.615s 59.902±3.118s

Table 6.1: groupBy performance with large scale datasets. Datasets were generated replicating
the X089-Mousebrain 842x603 dataset from the Metaspace project.

Chapter 7

Conclusion

We have tackled one of the main issues of the FaaS model successfully -the execution of I/O-

intensive workloads- and we have demonstrated that their performance can be modeled and

optimized. Still keeping a simple FaaS+SOSS architecture we overcome unnecessary resource

management issues and we are able to optimize bottleneck shuffle stages analytically. We also

contradict previous suggestions about the incompatibility of cloud functions with Big Data

analysis [23] and the inappropriateness of using SOSS as the communication intermediary [34].

Enabling the transparent access to remote resources for not specialized programmers is one of

the final milestones of cloud computing. Our present results, along with our preceding work

[21], suggest that automatically managed data analytics in serverless environments are possible

and could be integrated into research and industry domains in the future. However, we have

only focused our evaluation on the IBM Cloud, and the performance of parallel workloads is still

highly variable between cloud platforms [17]. As future work, our model should be validated

in different platforms and at different scales. Currently, it is the user’s responsibility to select

the appropriate cloud provider for its workloads, but the cloud research community is already

working on utilities for the transparent switch between cloud providers [35].

Regarding performance and applicability, we implement a groupBy operator on top of a com-

pletely serverless architecture with competitive performance. We propose an innovative solution

for Big Data analytics, giving the user the possibility to process datasets with a magnitude of

hundred GB from any kind of laptop and with just an IBM Cloud user account.

A future step of our research track is the integration of the shuffle inferencer into multi-step data

analysis pipelines so that the parallelism level can be scaled dynamically. In this work we have

39

40 Conclusion

generalized the model to overall all-to-all shuffle operations, but still remains to demonstrate if

it fits alternative distributed architectures and emerging serverless communication technologies.

The data exchange performance of intermediary-less cloud function communication systems [40]

and partially serverful frameworks [27], for instance, could potentially be predicted analytically

with a similar methodology.

Bibliography

[1] Amazon EMR. https://aws.amazon.com/emr. Accesed: 2021-06-05.

[2] Apache Parquet. https://parquet.apache.org/. Accesed: 2021-06-07.

[3] cython. https://cython.org/. Accesed: 2021-06-07.

[4] Google Colab. https://colab.research.google.com. Accesed: 2021-06-05.

[5] Ibm Cloud Code Engine. https://www.ibm.com/cloud/code-engine. Accesed: 2021-06-

05.

[6] memory-profiler. https://github.com/pythonprofilers/memory_profiler. Accesed:

2021-06-07.

[7] Metaspace Project. https://metaspace2020.eu/group/EMBL. Accesed: 2021-06-07.

[8] Pandas. https://pandas.pydata.org/pandas-docs/stable/. Accesed: 2021-06-07.

[9] PyArrow. https://arrow.apache.org/docs/python/. Accesed: 2021-06-07.

[10] Python hash. https://docs.python.org/3/glossary.html#term-hashable. Accesed:

2021-06-07.

[11] The R Project for Statistical Computing. https://www.r-project.org/. Accesed: 2021-

06-07.

[12] Redis. https://redis.io/. Accessed: 2021-06-06.

[13] TPC-DS. http://www.tpc.org/tpcds/. Accesed: 2021-06-07.

[14] TPC-H. http://www.tpc.org/tpch/. Accesed: 2021-06-06.

[15] Aitor Arjona, Pedro Garćıa López, Josep Sampé, Aleksander Slominski, and Lionel Vil-

lard. Triggerflow: Trigger-based orchestration of serverless workflows. Future Generation

Computer Systems, 124:215–229, 2021.

41

https://aws.amazon.com/emr
https://parquet.apache.org/
https://cython.org/
https://colab.research.google.com
https://www.ibm.com/cloud/code-engine
https://github.com/pythonprofilers/memory_profiler
https://metaspace2020.eu/group/EMBL
https://pandas.pydata.org/pandas-docs/stable/
https://arrow.apache.org/docs/python/
https://docs.python.org/3/glossary.html#term-hashable
https://www.r-project.org/
https://redis.io/
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/

42 BIBLIOGRAPHY

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, An-

drew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. Above the clouds: A berkeley view of cloud computing. Technical Report

UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Feb 2009.

[17] Daniel Barcelona-Pons and Pedro Garćıa-López. Benchmarking parallelism in faas plat-

forms. Future Generation Computer Systems, 2021.

[18] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard Paŕıs, Pierre Sutra, and Pedro

Garćıa-López. On the faas track: Building stateful distributed applications with serverless

architectures. In Proceedings of the 20th International Middleware Conference, Middleware

’19, page 41–54, New York, NY, USA, 2019. Association for Computing Machinery.

[19] Sujit Bebortta, Saneev Kumar Das, Meenakshi Kandpal, Rabindra Kumar Barik, and

Harishchandra Dubey. Geospatial serverless computing: Architectures, tools and future

directions. ISPRS International Journal of Geo-Information, 9(5), 2020.

[20] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, January 2008.

[21] Germán T. Eizaguirre. A Serverless Sort for Scalable Analytics in the IBM Cloud. Bachelor

thesis, Universitat Rovira i Virgili, 2020.

[22] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos

Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda: Outsourcing ev-

eryday jobs to thousands of transient functional containers. In 2019 USENIX Annual Tech-

nical Conference (USENIX ATC 19), pages 475–488, Renton, WA, July 2019. USENIX

Association.

[23] Geoffrey C. Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Status

of Serverless Computing and Function-as-a-Service(FaaS) in Industry and Research. arXiv

e-prints, page arXiv:1708.08028, August 2017.

[24] Reihaneh H. Hariri, Erik M. Fredericks, and Kate M. Bowers. Uncertainty in big data

analytics: survey, opportunities, and challenges. Journal of Big Data, 6(1):44, Jun 2019.

[25] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. Occupy

the cloud: Distributed computing for the 99%. In Proceedings of the 2017 Symposium on

Cloud Computing, SoCC ’17, page 445–451, New York, NY, USA, 2017. Association for

Computing Machinery.

BIBLIOGRAPHY 43

[26] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khandel-

wal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yadwadkar,

Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson. Cloud pro-

gramming simplified: A berkeley view on serverless computing. CoRR, abs/1902.03383,

2019.

[27] Youngbin Kim and Jimmy Lin. Serverless data analytics with flint. In 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD), pages 451–455, 2018.

[28] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos

Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18), pages 427–444,

Carlsbad, CA, October 2018. USENIX Association.

[29] Mariano Ezequiel Mirabelli, Pedro Garćıa-López, and Gil Vernik. Bringing scaling trans-

parency to proteomics applications with serverless computing. In Proceedings of the 2020

Sixth International Workshop on Serverless Computing, WoSC’20, page 55–60, New York,

NY, USA, 2020. Association for Computing Machinery.

[30] Ingo Müller, Renato Marroqúın, and Gustavo Alonso. Lambada: Interactive data ana-

lytics on cold data using serverless cloud infrastructure. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’20, page 115–130,

New York, NY, USA, 2020. Association for Computing Machinery.

[31] J. Nupponen and D. Taibi. Serverless: What it is, what to do and what not to do.

In 2020 IEEE International Conference on Software Architecture Companion (ICSA-C),

pages 49–50, Los Alamitos, CA, USA, mar 2020. IEEE Computer Society.

[32] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait, and Samir Belfkih. Big data tech-

nologies: A survey. Journal of King Saud University - Computer and Information Sciences,

30(4):431–448, 2018.

[33] Owen O’Malley. Terabyte sort on apache hadoop. Yahoo, available online at:

http://sortbenchmark. org/Yahoo-Hadoop. pdf,(May), pages 1–3, 2008.

[34] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow: Scalable

analytics on serverless infrastructure. In Proceedings of the 16th USENIX Conference

on Networked Systems Design and Implementation, NSDI’19, page 193–206, USA, 2019.

USENIX Association.

44 BIBLIOGRAPHY

[35] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik, P. Roca-Llaberia, and A. Ar-

jona. Toward multicloud access transparency in serverless computing. IEEE Software,

38(01):68–74, jan 2021.

[36] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro Garćıa-López. Serverless data

analytics in the ibm cloud. In Proceedings of the 19th International Middleware Conference

Industry, Middleware ’18, page 1–8, New York, NY, USA, 2018. Association for Computing

Machinery.

[37] Marc Sánchez-Artigas, Germán T. Eizaguirre, Gil Vernik, Lachlan Stuart, and Pedro

Garćıa-López. Primula: A practical shuffle/sort operator for serverless computing. In

Proceedings of the 21st International Middleware Conference Industrial Track, Middleware

’20, page 31–37, New York, NY, USA, 2020. Association for Computing Machinery.

[38] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira, Neeraja J.

Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and David A. Patterson.

What serverless computing is and should become: The next phase of cloud computing.

Commun. ACM, 64(5):76–84, April 2021.

[39] Jin Wang, Yaqiong Yang, Tian Wang, R. Simon Sherratt, and Jingyu Zhang. Big data

service architecture: A survey. Journal of Internet Technology, 21(2):393–405, 2020.

[40] Michal Wawrzoniak, Ingo Müller, Gustavo Alonso, and Rodrigo Bruno. Boxer: Data

analytics on network-enabled serverless platforms. In 11th Conference on Innovative Data

Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings.

www.cidrdb.org, 2021.

[41] Chaowei Yang, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. Big data and cloud com-

puting: innovation opportunities and challenges. International Journal of Digital Earth,

10(1):13–53, 2017.

[42] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of

the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI’12,

page 2, USA, 2012. USENIX Association.

[43] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and Ion Stoica. Caerus:

NIMBLE task scheduling for serverless analytics. In 18th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 21), pages 653–669. USENIX Associ-

ation, April 2021.

Appendix A

Annex: Code availability

The code for our framework, specially our groupBy operator, is available at the private Gitlab

repository of the CloudLab group (universitat Rovira i Virgili, Tarragona). Access will be

conceded under request.

https://git.cloudlab.urv.cat/geizaguirre/primula original.

45

https://git.cloudlab.urv.cat/geizaguirre/primula_original

46 Annex: Code availability

Appendix B

Annex: Lithops configuration

To configure Lithops, refer to its official GitHub page, which includes intuitive and simple

guides with all the necessary steps.

https://github.com/lithops-cloud/lithops

47

https://github.com/lithops-cloud/lithops

	Abstract
	Index
	List of Figures
	List of Tables
	Introduction
	Big data analysis in the Cloud
	FaaS for user-friendly Cloud computing
	Data analysis in the Cloud
	Towards automated, I/O intensive workloads in serverless environments
	Contribution

	Related Work
	Planning
	Objectives
	Development scheme
	Task definition

	Design and architecture
	groupBy operator
	Integration of the groupBy with previous contributions
	Grouping with the MapReduce algorithm
	Granulated I/O
	Barrierless execution
	Speculative execution
	Inferring the optimal level of parallelism

	Improving I/O performance
	Concurrent I/O
	Optimizing intermediary objects

	Memory usage in cloud functions
	Using compiled code.

	Implementation
	Base framework
	I/O and memory optimizations
	Integration of cython

	Evaluation
	Is the inference model generalizable?
	Performance validation

	Conclusion
	Bibliography
	Annex
	Annex: Code availability
	Annex: Lithops configuration

