

WP2. Architecture

Pedro Garcia Lopez

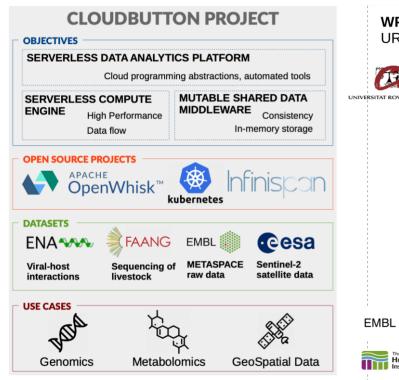
Coordinator @ Universitat Rovira i Virgili

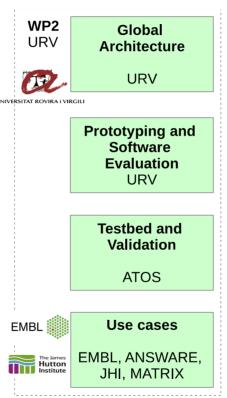
Imperial College London

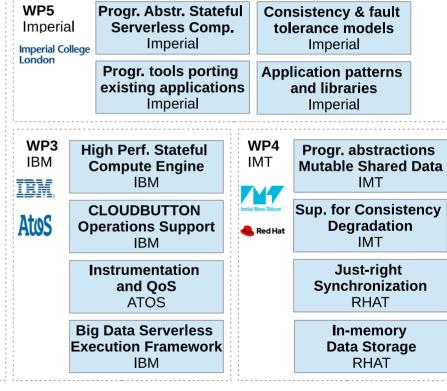
http://cloudbutton.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825184.

CloudButton Goals and tasks







Global Architecture

CloudButton Requirements and KPIs

Simplicity/Productivity

- Front-end engineers and data analysts without Cloud knowledge
- Hide Resource provisioning (data-driven approach)
- Semi-transparent (Python notebooks) or fully transparent transition to the Cloud (CloudButton)

Performance

- Show performance improvements compared to cluster technologies like Spark
- Low overheads in the transition to the Cloud

Scalability

- Proof that we scale to large data volumes using massive parallel computing power
- Big Data pipelines (Use Cases)

Elasticity

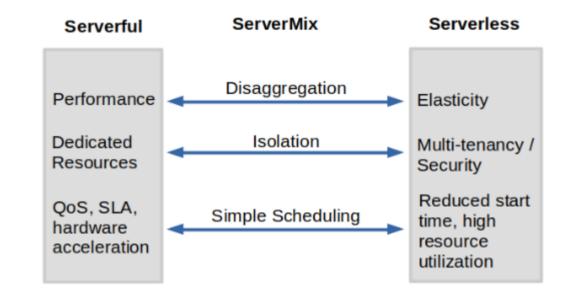
Demonstrate elastic workloads that benefit from the Serverless model

Cost

 Provide adequate cost/performance tradeoffs and offer alternatives services for batch analytics

Serverless Challenges

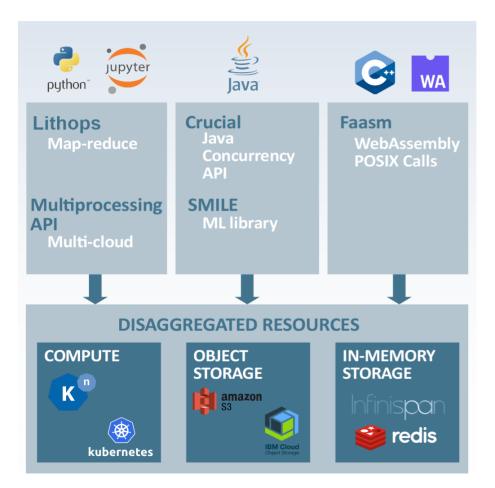
- Complexity
- Stateful Computing
- Direct Communication
- Intermediate data
- Cost!
- Smart Data-driven provisioning



Pedro García López, Marc Sánchez Artigas, Simon Shillaker, Peter R. Pietzuch, David Breitgand, Gil Vernik, Pierre Sutra, Tristan Tarrant, Ana Juan Ferrer, Gerard París:

Trade-Offs and Challenges of Serverless Data Analytics. Technologies and Applications for Big Data Value 2022: 41-61

Transparency



We advocate for access transparency: enabling local and remote resources to be accessed using identical operations.

Transparency means concealing the complexities of distributed programming like remote locations, failures or scaling.

For us, **full transparency** implies that we can **run unmodified single-machine code** over effectively **unlimited** compute, storage, and memory **resources**.

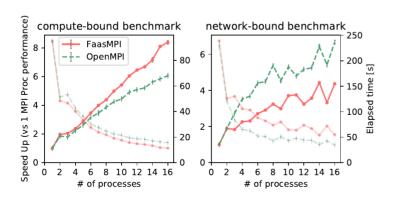
- Serverless End Game: Dissaggregation Enabling Transparency
- Toward Multicloud Access Transparency in Serverless Computing
- Efficient portage of Java and shell applications to serverless.
- Transparently running OpenMP/MPI applications on Serverless
- Transparent Serverless execution of Python multiprocessing applications

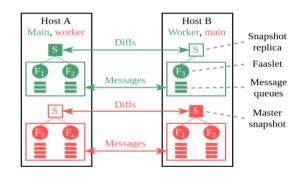
Transparent Support for HPC Applications (WP5)

- Supports shared memory & message passing abstractions for serverless
- Implements OpenMP & MPI interfaces for data & compute intensive HPC applications
- Provides **scheduling**, **state management**, and **snapshots** using Faasm

Faabric library for distributed shared memory & message passing on serverless

- Two key abstractions: **Snapshots & FGroups**
- For **shared memory**, Faaslets are forked and their state is synchronised using diffs
- For message passing, Faaslets have group address for asynchronous communication





- Available on **GitHub**: https://github.com/faasm/faabric
- Better performance compared to commercial batch cloud solutions
- Published in USENIX ATC 2020, more papers submitted

Java transparency (WP4)

```
service = new AWSLambdaExecutorService();
AtomicInteger cnt = new AtomicInteger();
service.submit((Callable) () -> {
    for (long i = 0L; i < 100; i++)
         if ( Math.pow(Math.random(),2) +
                  Math.pow(Math.random(),2)<= 1.0)</pre>
                           cnt.getAndIncrement();
});
         Smile-8
       Smile-160 =
 running time (s)
       CRUCIAL =
   150
                                           SMILE Machine
   100
                                           Learning Library
    50
```

Main features

- multithreaded-like API
- easy portage to serverless of legacy applications
- support for multiple FaaS platforms
- serverless-ready storage (elastic & dependable, NVM support, kubernetes operator)

[TOSEM'22, SOSP'21, Eurosys'21/20, Middleware'21/19]

Python Transparency (WP2,WP3)

Cloud Functions Code Engine **VPC** Cloud Object Storage

AWS Lambda AWS S3

Functions Blob Storage

Cloud Functions Cloud Run Cloud Storage

Alibaba Cloud

Functions Compute Object Storage Service

OpenShift

Knative OpenWhisk OpenStack Swift Redis Ceph

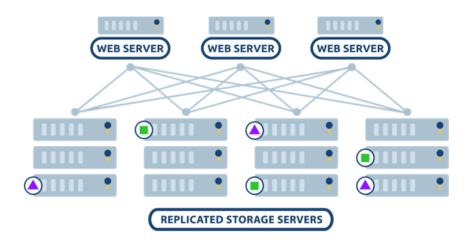
What is Lithops

Lithops is a

- Map-Reduce Serverless Platform
- Orchestrator of Cloud Resources
- Data Staging platform
- Python Cloud Computing toolkit
- Especially good for large unstructured data

Examples

Data Preprocessing
Extract, Transform and Load (ETL)
Parallelization of Python code in the cloud
Python notebooks in the Cloud
Hyper-parameter tuning
Montecarlo Simulation
Image processing
Text filtering and queries
Data reduction



Python Multiprocessing transparency

```
import lithops
import random
def is inside(n):
    count = 0
   for i in range(n):
       x = random.random()
       y = random.random()
       if x*x + y*y < 1:
            count += 1
    return count
if name == ' main ':
   np, n = 10, 15000000
    part count = [int(n/np)] * np
   fexec = lithops.FunctionExecutor()
   fexec.map(is inside, part count)
   results = fexec.get result()
    pi = sum(results)/n*4
    print("Esitmated Pi: {}".format(pi))
```

Usage

- Application-level transparency
- Scale applications using serverless

Full multiprocessing API implemented

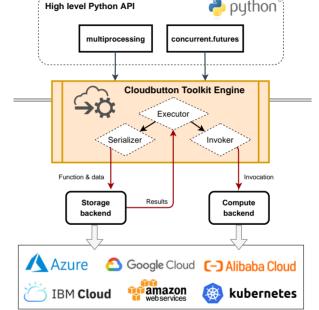
- Process, Pool, Pipe, Queue, Manager ...

Achievements

- Migrate legacy applications to the cloud
- Vertical scaling of a VM
- Hiding complexities of distributed systems

Lithops MapReduce API (Data-driven)

```
import lithops
# Bucket with prefix
data location = 'cos://lithops-sample-data/test/' # Change-me
def my_map_function(obj):
    print('Bucket: {}'.format(obj.bucket))
    print('Key: {}'.format(obj.key))
    print('Partition num: {}'.format(obj.part))
    counter = {}
    data = obj.data_stream.read()
    for line in data.splitlines():
        for word in line.decode('utf-8').split():
            if word not in counter:
                counter[word] = 1
            else:
                counter[word] += 1
    return counter
if __name__ == "__main__":
    fexec = lithops.FunctionExecutor(log level='DEBUG')
    fexec.map(my map function, data location)
    print(fexec.get_result())
```

Functions

Functions Compute

Cloud Functions Code Engine VPC Gen2

Cloud Object Storage

AWS Lambda AWS Batch AWS EC2

AWS S3

Blob Storage

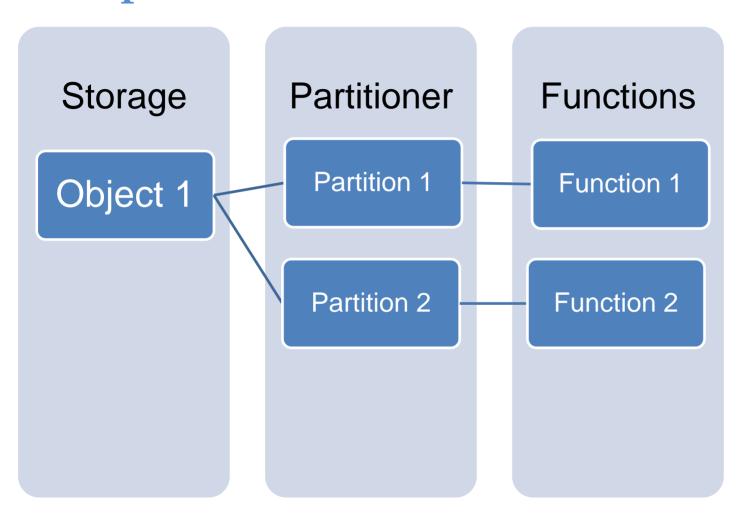
Cloud Functions Cloud Run

--- Object Storage Service Cloud Storage

Batch/Job - OpenWhisk Knative

OpenStack Swift - Ceph MinIO - Redis - Infinispan

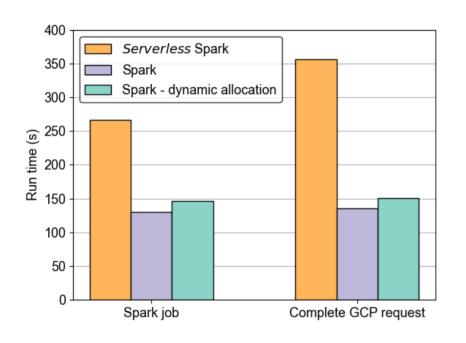
Lithops Partitioner (Data-driven)

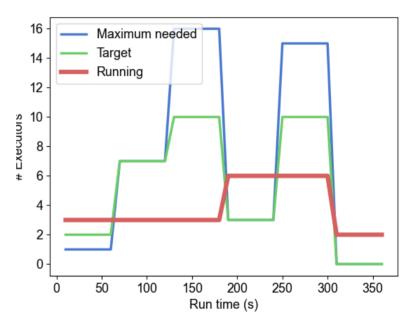


- Preprocessing
 - LIDAR
- On the fly
 - mIMZ
 - Text
 - GZIP
 - COPC
 - COG*

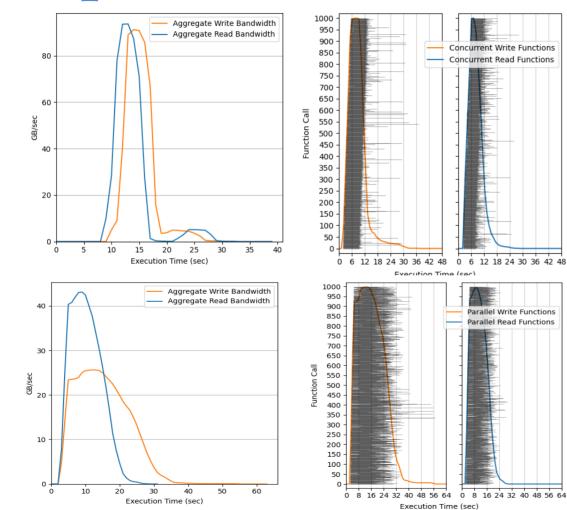
Benchmarks and Validation

Elasticity (Spark vs Cluster Spark)





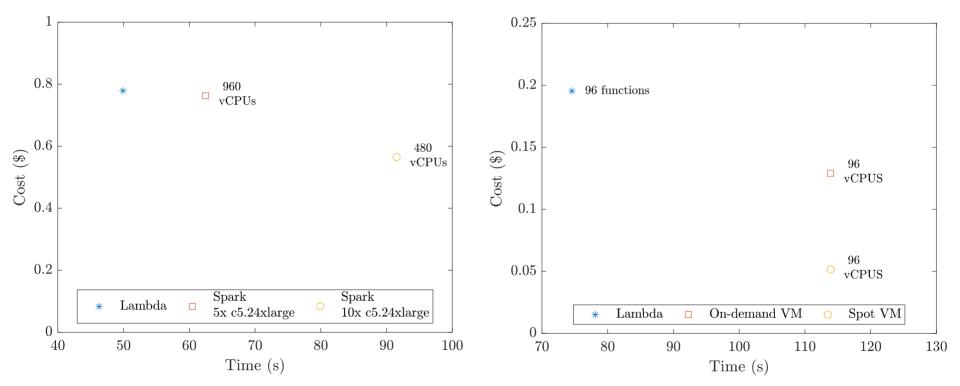
Lithops benchmarks



Lithops Multicloud FaaS Benchmark..

https://github.com/lithopscloud/applications/tree/mast
er/benchmarks

Elasticity compute-intensive (Spark vs Serverless)



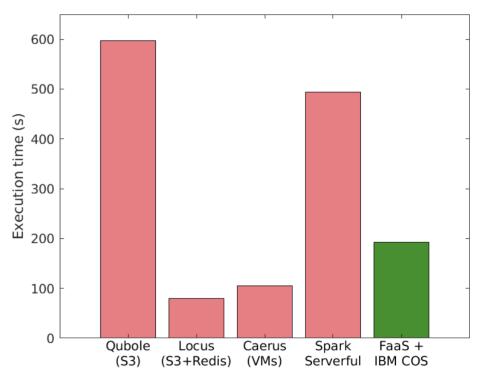
Reference: Serverless Elastic Exploration of Unbalanced Algorithms

Performance data-intensive (100GB Terasort)

A **completely serverless architecture** (cloud functions + object storage) in the IBM Cloud

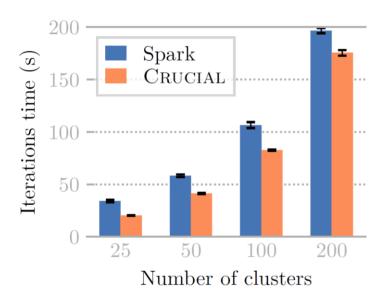
VS

State-of-the-art **serverful and partially serverful** solutions

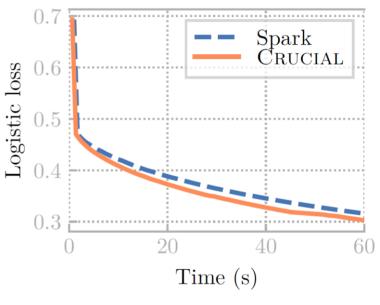


Reference: Primula: a Practical Shuffle/Sort Operator for Serverless Computing

Performance comm-intensive (Machine learning)



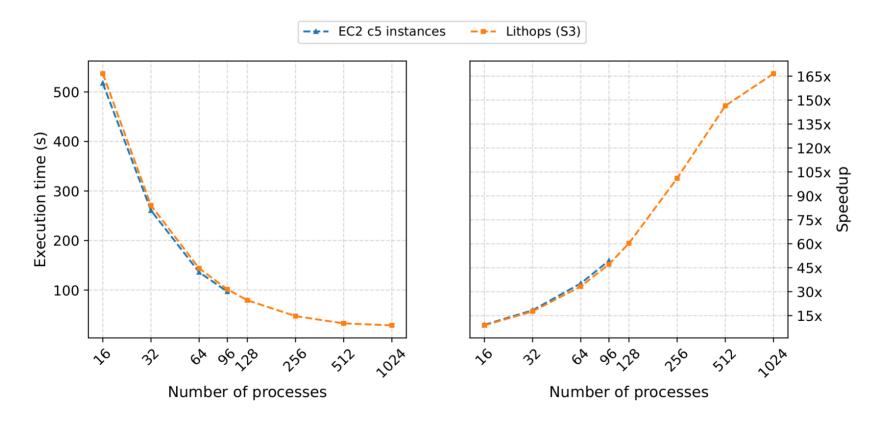
KMeans



Logistic Regression

Reference: Stateful Serverless Computing with Crucial

Performance (Hyperparameter tuning)



Reference: Transparent Serverless execution of Python multiprocessing applications.

Performance (Machine learning)

■ For fixed budgets, MLLess (Lithops) is capable of outperforming Pytorch's serverful architecture in all cases (1) 0.65

 FaaS implementations can be more costefficient than serverful solutions for fast-converging algorithms when the right optimisations are applied.

Reference: MLLess:
Achieving Cost Efficiency in
Serverless Machine Learning
Training

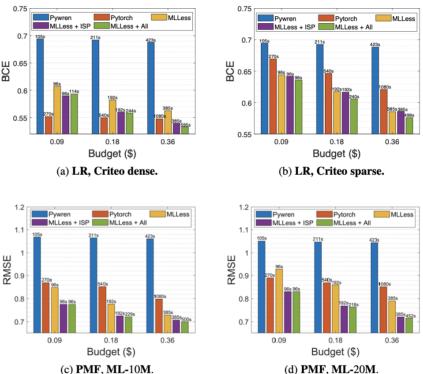
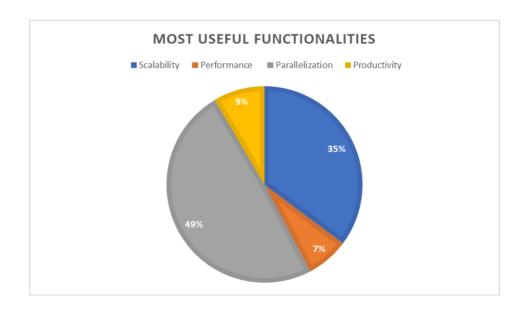


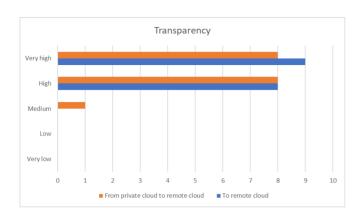
Figure 8: Cost vs. loss comparison between PyTorch, PyWren-IBM and MLLess with different variants: BSP synchronization (MLLess), ISP synchronization (MLLess + ISP) and ISP synchronization + auto-tuner (MLLess + All), for 24 workers. The numbers above the bars report the maximum execution time affordable with each possible budget.

Simplicity KPI (Lithops User Questionnaire)

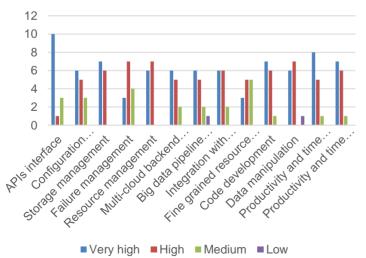
- 16 people testing Lithops for their apps
- UCs representatives but not involved in the project
- 7 aspects evaluated: i) Applicability, ii) Simplicity, iii) Productivity, iv)
 Scalability, Elasticity and Performance, v) Cost, vi) Learning and documentation, and vii) Overall system evaluation.

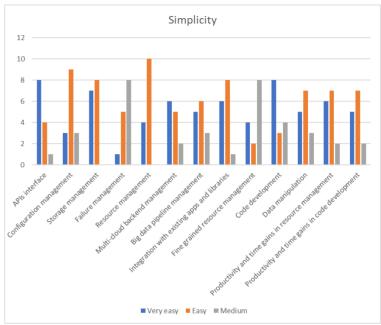


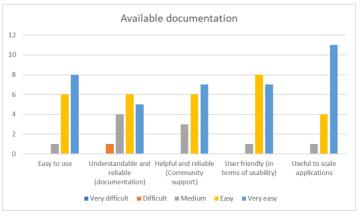
Main outcomes (cont'd)



Productivity







Use cases

Metabolomics Use Case

CloudButton project impact

New, serverless implementation of METASPACE

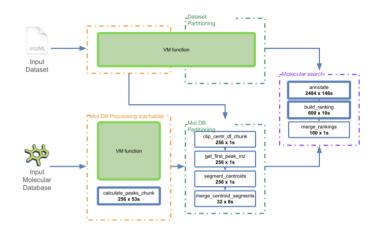
- Using Lithops Serverless Data Analytics Platform
- Using hybrid approach combining Lithops and Virtual Machines
- o By EMBL with the help from IBM Research: 280+ commits

Lithops-METASPACE is used in production since March 2021

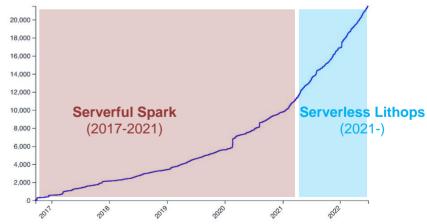
- o Replacing (old) serverful Apache Spark implementation
- Lithops-METASPACE was benchmarked (KPIs in the next slide)
- Lithops-METASPACE started to be used in METASPACE production since March 2021
- Since then, in 1.5 years, we have processed ~50% of all submissions (compared to 2017-2021)

Increased exploitation & sustainability

- Helped create the startup SpaceM on spatial single-cell metabolomics
- Helped secure other grants (EU Cloud Computing, ERC PoC, NIH and other grants) to fund METASPACE till 2027



Datasets processed on METASPACE production



KPIs of Lithops-METASPACE: reduced runtime and costs

- Lithops implementation outperforms the (previous) Spark implementation in runtime and cost (for all but one very large dataset)
- o Lithops provides a competitive alternative to Apache Spark in code readability and ease of development

Benchmarking the Lithops implementation of METASPACE as compared to the (previous) serverful Apache Spark implementation

Dataset	Size (MB)	Spark time	Lithops time	Relative time	Spark \$USD	Lithops \$USD	Relative cost
20190228_Rhodamine_ Well3_p70s50_POS	63	709.633	331.423	-53%	0.342	0.094	-73%
NPC_179_pos	102	480.642	249.911	-48%	0.226	0.068	-70%
FDtest_exp7_mixed_slid e_DAN_Slice2	592	496.158	265.631	-46%	0.234	0.079	-66%
DESI HEART SYNAPT-XS RES-MODE	1,245	630.096	576.766	-8%	0.301	0.266	-12%
150618-RatBrain-DHA-N EG-centroid	1,539	570.610	765.351	34%	0.271	0.251	-7%
2020-02-05_SlideD_DH B_POS_110x280_150u mSS_31at	1,994	536.161	648.503	21%	0.254	0.258	2%
MPI//MPIMM_011_FT_P _KM	34,465	610.401	515.240	-16%	0.291	0.190	-35%
region1	39,733	744.605	839.450	13%	0.359	0.210	-42%
2019-12-19_DDN_micro be-spotting_exp2_45_40 0x900_30	41,532	3703.384	3544.381	-4%	1.853	5.777	212%
k233_combined three datasets	42,653	868.984	590.230	-32%	0.422	0.185	-56%

KPIs of Lithops-METASPACE: elasticity and simplicity

Elasticity: adjustment to the varying datasets sizes

- o Submitted datasets size vary: 0.05 GB 300 GB (4 orders of magnitude!)
- Lithops help handle dataset sizes without reconfiguration by running 1000s parallel jobs (2000 in real applications) per dataset
- o Hybrid elastic approach balancing IBM CodeEngine (with RAM up to 32 GB) and VM (RAM of 128+ GB)

Simplicity of implementation

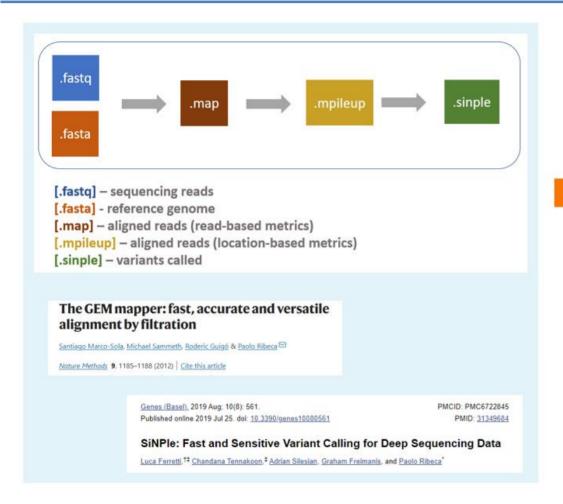
- Ease of Lithops configuring
- o Lithops-METASPACE can be run from a notebook (see our GitHub)
- Able to run METASPACE at the same capacity with a reduced team (2 software developers in 2022 vs 3 software developers previously)

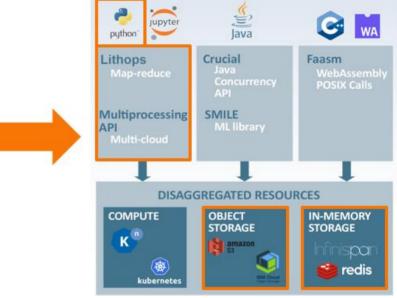
Summary

- METASPACE is a critically important platform for the scientific community
- With increasing popularity, the previous Spark version became a bottleneck
- Lithops-METASPACE was implemented and is used in production since 2021
- Lithops provides reduced runtime and costs, yet increasing elasticity and simplicity

Genomics Use Case

Variant Calling pipeline



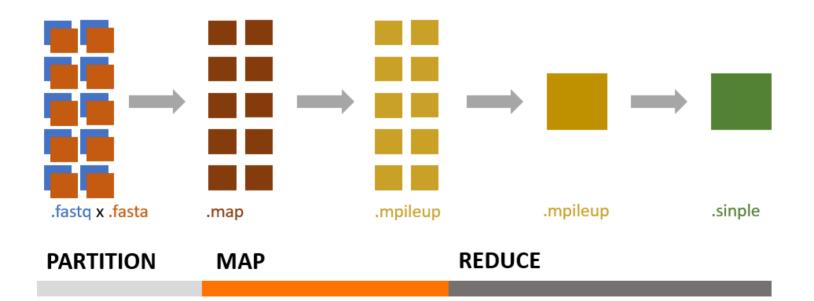


The requirements of the Genomic Use Case mandate the use of a complex, heterogeneous platform such as the one developed by CloudButton.

Variant Calling pipeline map reduce

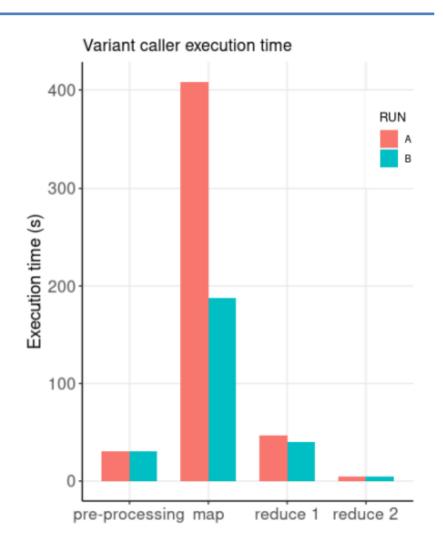
Multi-cloud python computing framework

Parallelisation of local applications using stateless cloud functions



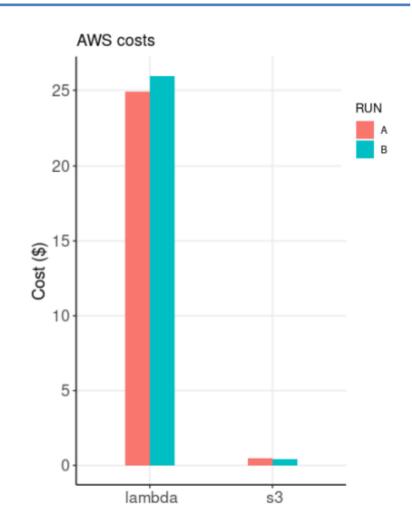
KPIs: Performance

- 101 Gb FASTQ tested (ERR9856489)
- Genomics use case runs A/B:
 - 260/225 FASTQ chunks [385/444Mb]
 - ► 4680/4050 lambda functions
 - ► 4096/5120 Mb mem per function
- Execution time:
 - **7/3 min** (up to 33 Gb/min)
 - ► HPC run ~7 hours
 - Illumina DRAGEN : ~30 min (est.)
- Huge wall-clock time improvement!



KPIs: Cost

- 101 Gb FASTQ tested (ERR9856489)
- Genomics use case runs A/B:
 - 260/225 FASTQ chunks [385/444Mb]
 - ► 4680/4050 lambda functions
 - ► 4096/5120 Mb mem per function
- Cost:
 - ► ~25\$ for both runs
 - ► Illumina DRAGEN : ~15\$ (est.)
- Higher cost than Illumina DRAGEN but <2-fold cost increase to deliver up to 10-fold speed-up, and further optimisations and/or parameter choices possible.



KPIs: Scalability, elasticity, simplicity

- Scalability: Stateful processing of alignment indices across functions poses scalability challenge: other non-Redis approaches under investigation
- **Elasticity**: Time-sensitive sequencing analysis workloads can benefit from the high performance of the serverless architecture developed
- Simplicity: Current pipeline design partially data-driven, but with the potential for full automation of partition choices based on cost considerations and input data size.

Conclusions

- Porting genomic workflows to serverless cloud can be challenging, but powerful components such as Lithops make the process possible
- Our approach to the Genomics Use Case shows superior wall-clock performance, and probably a record in the field
- The variant calling pipeline developed by the project is expected to be a useful software product in the genomics field
- Further genomics pipelines can be built applying the design principles developed in this use case.

Geospatial Use Case

Overview

Raw geospatial

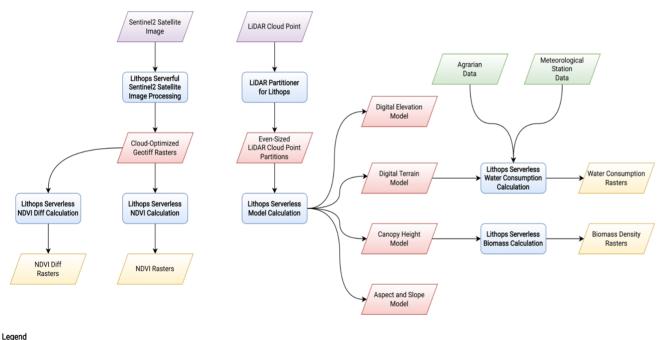
data input Geospatial

metadata

Intermediate geospatial data

Geospatial process

Six interconnected serverless geospatial workflows (3 preprocessing, 3 analytics) - Serverless is capable to preprocess but also to perform analytics



processing workflow

- E1: High-resolution hybrid land-cover mapping
 - Sentinel2 Image Processing
 - NDVI Workflow
- E2: 3D fuel mapping for forest risk assessment
 - LiDAR partitioner
- Digital Terrain Model Calculation
- Biomass calculation*
- E3: Water Consumption
 - Water Consumption Workflow

Preprocessing Workflows

1. LiDAR point-cloud partitioner tool

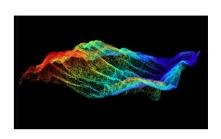
- Novel density-based LiDAR point cloud partitioner
- Produces even-sized partitions for efficient serverless computation

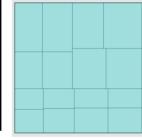
2. Serverless Digital Models Calculation

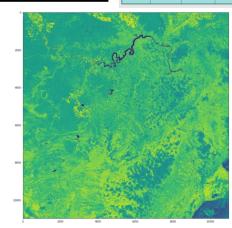
- Generate many geospatial surface models at scale: from LiDAR to GeoTIFF
- Improved performance thanks to density-based partitioning

3. Sentinel2 satellite image preprocessing

- Preprocess and apply atmospheric correction to Sentinel2
 JPEG2000 images and transform to Cloud-Optimized
 GeoTIFF
- Lithops allows to seamlessly combine serverful and serverless resources for resource-demanding processes







Computing Workflows

4. NDVI calculation

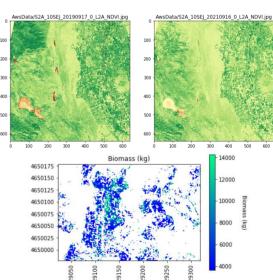
- Calculate NDVI from Sentinel2 preprocessed images to asses deforestation caused by wildfires
- Cloud-Optimized GeoTIFFs enable to efficiently process satellite images using many parallel serverless functions

5. Water Consumption calculation

- Calculate crop water consumption for better water management in intensive cultivation areas
- Workflow with great variability in task granularity serverless is effective for short-running tasks

6. Biomass calculation

- Calculate tree volume from canopy height models to assess biomass
- Lithops simplifies scaling code from local to the Cloud



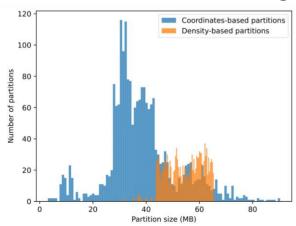
KPIs: Performance

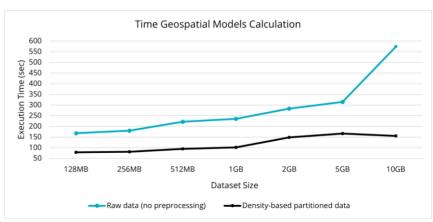
• LiDAR partitioner tool

- Even-sized partitions is beneficial for serverless computation: load balancing is key to gain performance from greater parallelism.
- o Preprocess and partition 516 files, **80 GB** in 2 minutes.

• Serverless Digital Models Calculation

 A finer granularity partitioning allows to exploit parallelism of serverless functions ⇒ Processing a dataset of 10GB is 72% faster using proper partitioning.





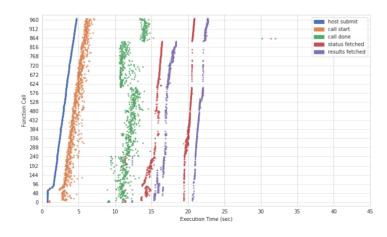
KPIs: Performance, Simplicity

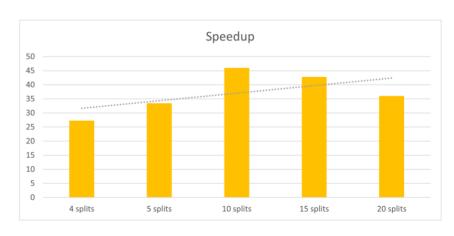
NDVI Calculation

Proper pre-processing with cloud-optimized data types enables to use 968 functions to get 1.25 GB/s processing throughput.

Biomass Calculation

- Compute-intensive tasks runs for 4 hours and 20 minutes on the user's laptop and in 5 minutes and 41 seconds using 400 parallel serverless functions.
- Lithops and serverless enables simple Jupyter Notebook task parallelization and scaling for a speedup gain of 46x.





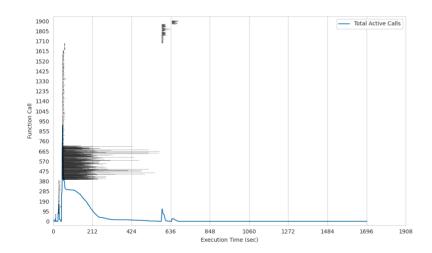
KPIs: Elasticity, simplicity

Sentinel2 satellite image preprocessing

Lithops allows to seamlessly combine serverful and serverless resources.

Water Consumption workflow

- Data volume of 6.07 GB which cover >11.313 km² of surface area
- Flexible and efficient resource allocation: from 1296 to 36 functions between steps.



Job ID	Function	Invocations	Memory (MB)	Avg Run time (s)	Cost (USD)
M000	asc_to_geotiff	36	73728	0.85	0.001
M001	get_tile_meta	36	73728	1.27	0.001
M002	split_blocks	324	663552	2.63	0.029
M003	radiation_interpolation	324	663552	149.70	1.649
M004	temperature_interpolation	324	663552	3.35	0.036
M005	humidity_interpolation	324	663552	3.12	0.034
M006	wind_interpolation	324	663552	3.12	0.034
M007	merge_blocks	180	368640	8.33	0.051
M008	combine_calculations	36	73728	14.46	0.017
Summary		1908	3907584 MB	28.60 s	1.85 \$

Conclusions

Conclusions

- Global architecture with **Lithops as Serverless Data Analytics platform**. All subprojects integrate with Lithops. Metaspace is built on Lithops and it runs in production in IBM Cloud. Infinispan is a Lithops Storage Backend, FaasM is a Lithops Compute Backend.
- **Three transparency efforts** (Python, Java, WebAssembly) weave the project results (WP3, WP4, WP5)
- Lithops was successfully used in the **three use cases** demonstrating **KPIs such as Simplicity, Performance, Scalability and Elasticity**.
- Lithops is **NOT** a competitor of Apache Spark or Ray. It is not an in-memory cluster technology.
- Lithops can be used as Data Staging platform (Preprocessing) but also as simple orchestrator of heterogeneous Cloud services (backends). Lithops is also a perfect tool to parallelize and migrate Big Data applications to the Cloud (DATOMA Cloud)

THANK YOU!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825184.