
WP3 - Serverless Compute Engine for Big Data

Gil Vernik

IBM Research

Overview of WP3

Structure - CloudButton
Task 3.4 - Big Data Serverless Execution Framework
Integration between applications and FaaS engines
through efficient handling of fault tolerance, shuffling,
caching, Big Data partition discovery, and integrations
with storage high performance stateful FaaS engine

Task 3.1- High Performance Stateful FaaS Engine
Research and development of FaaS platform
extensions to support stateful and highly performant
execution of serverless tasks. Research and
development of new techniques to optimize a tradeoff
between the infrastructure utilization and performance

Task 3.2 - CloudButton Operations Support
Explore cost-effectiveness tradeoffs involved with
applying serverless computing model for
heterogeneous Big Data analytics. Explore relaxation of
the rigid resource constraints to simplify development
experience and allow for higher utilization of the
infrastructure resulting in better cost-efficiency.

Task 3.3 - Instrumentation and QoS
The goal of this task is to instrument containers that
host serverless functions. Instrumentation will inject
into containers specific probes that will enrich
available monitoring information for serverless
functions.

CloudButton

• CloudButton project remains on the right “wave” and is perfectly
aligned with the market direction

• Serverless remains to be the hot topic
• Grow beyound traditional FaaS and now used for broad range of

workloads and use cases
• We developed Lithops, an open source framework that is the main

part of WP3 and also served as a “glue” for other WPs developed in
the project

• Lithops used in various production use cases, also beyond the
CloudButton

Overall motivation and some of the goals

• Many workloads need dynamic resources during the execution
phase, that are not known prior the execution started

• We should treat serverless not just as FaaS, but rather a pattern
where workload deployed without manual creation of the cluster or
resources

• The easy move to serverless
• Serverless for more use cases
• Cost efficiency
• Avoid vendor lock-in

WP3 – Deep Dive

Lithops framework

• Lithops is a novel Python framework developed part of CloudButton Project
• Designed to scale Python applications at massive scale against major cloud providers
• Open source http://lithops.cloud
• Mature . Stable. Production ready
• Many blogs, publications, talks

Serverless for more use cases
The easy move to serverless

http://lithops.cloud/

Lithops to scale Python code and applications
input data = array, COS, etc.

def my_func(x):
 //business logic

Lithops

res = fexec.get_result()

IBM Cloud Functions

import lithops

fexec = lithops.FunctionExecutor()
fexec.map(my_func, input_data)

Lithops

Lithops to scale native code or packages

Lithops

res = fexec.get_result()

IBM Cloud Functions

import lithops

fexec = lithops.FunctionExecutor()
fexec.map(cmd_exec, input_data)

Lithops

input data = array, COS, etc.

def cmd_exec(x, bucket, ibm_cos,cmd):
 res= subprocess.call(cmd, shell = True)

Gromacs, Protomol, Dlib, Gdal, ffmpeg, etc.

Lithops architecture

Lithops implements a similar API to
the built-in python
concurrent.futures
library. This API is based on objects
called Futures, created when
Lithops spawns a function.
With this Future object, it is
possible to access the results
and some statistics about
the execution.

Python notebooks

Multi cloud with Lithops

• No vendor lock-in
• Multi cloud portability
• Can be easily extended with more backends
• Hybrid usage is supported
• An open-source framework for big data analytics and

embarrassingly parallel jobs, that provides a universal
API for building parallel applications in the cloud.

Big Data processing with Lithops

• Lithops supports data-driven workloads for Big Data processing
• We developed advanced Big Data partitioner with chunking

algorithms to support partitions of variable sizes
• supports array,
• URLs,
• location in the object storage,
• knows how to partition CSV files without breaking the line,
• custom based partitioner, etc.

Multiple storage backends

• Lithops can support any storage backends
• IBM Cloud Object Storage , Ceph,

Google Storage, OpenStack Swift
• In-memory, like Redis
• Can be easily extended with additional storage

backends via single interface
• Lithops and Red Hat

• Red Hat Infinispan, Red Hat Openshift

Hybrid model

Why Hybrid?
• Hybrid approach may reduce overall costs and improve efficiency.
• Allows to apply better optimizations that will reduce number of serverless actions,

thus reducing overall costs
• Supports legacy code that can’t be executed in parallel (like some of the sorts)
Hybrid in CloudButton with Lithops
• Deploy certain flows to be executed in VMs.
• Deploy certain flows to serverless backend
• Decision happens in runtime, based on the user submit workload
EMBL use case
• Using hybrid approach with IBM Gen2 and IBM Cloud Code Engine

Lithops for hybrid cloud
• Public cloud is very attractive for unlimitted

resources and scale
• Organizations may have sensitive data that initially

must be processed on premise and can’t use public
cloud right away

• With Hybrid approach data processed on premise,
once data is less senstive it can be moved to Cloud
for the further processing

• Lithops supports various backends and can be
easily used for hybrid use cases

• Can address locality by ability to run computations
locally in one VM

Multi cloud hybrid experience

UX remains the same for OCP, IBM Cloud, and others

Serverless without constraints

• Certain workloads (e.g., in the ML/AI or data processing space) can benefit
significantly from running as much as possible on the same machine for
low-latency, in-memory data sharing. To be concrete, this means up to 128
vCPUs, 1TB of memory, many TBs of local SSD disk, etc. are available per
invocation and, potentially, hours of execution time if needed.

• We developed a “standalone” mode in Lithops that can provision in
runtime any number of VMs, deploy the workload to those VMs
and automatically dismantle them when the worklod completed (or
keep them warm)

What might affect costs

• The costs of serverless usually comprises of memory, CPUs, and execution
time

• Wrong memory may lead to out of memory runtime exception or consume
more costs if not optimal.

• Choosing the optimal memory in runtime per analytic workload is the
major key to reduce costs.

• Costs may also be affected if the invocation is stalled for any reason

Cost effective workloads

• We etimate right memory based on sampling in runtime and choose
minimal memory size

• METASPACE maintain statistics from previos executions, so that it knows
how much resources a job requiers based on the past executions.

• Sampling to estimate right scale to avoid timeouts
• Multi-cloud to reduce costs, improve performance and efficiency
• Lithops reusing the same authentication token across many invocations,

thus greatly improving overall performance
• We developed daemons for automatic dismantle of VMs in case of user

errors, etc.

Temporary Data

• CloudButton supports any plugable storage options for temporary data
• We extended CloudButton to use Red Hat Infinispan as it’s internal storage

� Infinispan is an in-memory, distributed, elastic NoSQL key-value datastore.
� Infinispan may keep data in persistent storage or in memory only.

CloudButton engine generates status file
for each invocation

User map-reduce flows may need to
shuffle data between stages

Share data and maintain state

• We defined a generic user-friendly class called “CloudObject” which contains all required
details to reach the storage object that it represents.

• CloudObject can be considered as a pointer to the stored data, without the necessity of
managing its storage path exactly.

• We use CloudObjects as part of an external cache system that was developed to store
intermediate pipeline results and load each result when needed.

This Photo by Unknown Author is licensed under CC BY

CloudObject
CloudObject

CloudObject

https://courses.lumenlearning.com/beginalgebra/chapter/10-1-1-solving-one-step-equations-using-properties-of-equality/
https://creativecommons.org/licenses/by/3.0/

Serverless workflows

22

What is serverless workflow
• A serverless workflow is a DAG of computational tasks
• Executed on events such as: a new data set arrival; a clock interrupt; etc.
• With no human attendance required
• Potentially executed by different backends, such as across multiple clouds
Why we need serverless workflow
• Code reuse among data scientists and across teams
• Automation, composability
• Learning and optimization
• The engine can learn from past executions and use a pipeline structure information to optimize

scheduling – important for cost-efficiency

1

2
3 4

“MyWorkflow”

Apache Airflow

• An open source platform that provides authoring, scheduling and monitoring of workflows
represented as directed acyclic graphs (DAGs). Every node of the DAG represents a
task, and the edges represent dependencies between tasks, and thus, the order of
execution. Apache Airflow’s main objective was to be a scheduling platform for ETL
workflows with a focus on the integration of different services from potentially different
Cloud providers.

• The Airflow architecture, in brief, can be separated into two components. The scheduler is
the component that is responsible for monitoring workflows and tasks and dispatching the
corresponding tasks according to their dependencies. On the other hand, we have the
workers, who are in charge of executing the logic of the assigned tasks. Airflow can scale,
however, it is not designed to support all the workload on the servers themselves.
Running many tasks in parallel can significantly overwhelm the load on the worker nodes
and can saturate the entire system.

• On the other hand, serverless functions, and in particular the Lithops framework, provide
a good opportunity to offload all this massively parallel work off the Apache Airflow cluster.

• The advantages of running a serverless workflow with Airflow are clear. On the one hand,
one has the instant scalability of serverless functions available. In addition, FaaS services
do not charge for idle time, so resources are used more efficiently.

Instrumentation and QoS - goals

� Monitoring of serverless functions through specific probes and metrics

� Integration with other CloudButton components to

❑ notify these components about monitoring metrics evaluations and QoS violations

❑ use obtained monitoring parameters to implement elasticity and QoS mechanisms in

order to provide improved stability, to prevent system oscillations, and to respond

quickly to changing conditions and the time-varying requirements of analytics

applications

24

Cloudbutton-SLA tool

� Responsible for creating, managing and
evaluating SLAs based on the metrics
gathered in CloudButton

� Relies on the information gathered by
external monitoring tools (Lithops and
Prometheus), which are used to
continuously evaluate the SLAs.

� Notify other components about managed
SLAs, and SLA violations related to the
QoS defined for the CloudButton
applications.

25

Instrumentation and QoS - CloudButton

� Monitoring and evaluation of Lithops and Prometheus metrics

� SLAs management

� Implementation of custom metrics for serverless functions (applications performance): “not
started”, “too long

� Integration with Prometheus, RabbitMQ and Pushgateway

� Integration with Lithops via RabbitMQ

� Notifications of violations to external components

� Predicted metrics with Prometheus query functions holt_winters() and predict_linear() to anticipate
the occurrence of a violation

� User Interfaces to manage and visualize the SLAs and violations: Swagger UI, Grafana

26

Summary and Impact

Production workloads with Lithops

• METASPACE is using Lithops in production over IBM Cloud
• Anomaly Detection (IBM Cloud)

https://developer.ibm.com/apis/catalog/ai4industry--anomaly-detect
ion-product/api/API--ai4industry--anomaly-detection-api/#connecti
on_check

• Lithops is an official API for IBM Cloud Code Engine
• Many other customer engagement where Lithops used as a tool to

deploy workloads against hybrid compute backends

https://developer.ibm.com/apis/catalog/ai4industry--anomaly-detection-product/api/API--ai4industry--anomaly-detection-api/#connection_check
https://developer.ibm.com/apis/catalog/ai4industry--anomaly-detection-product/api/API--ai4industry--anomaly-detection-api/#connection_check
https://developer.ibm.com/apis/catalog/ai4industry--anomaly-detection-product/api/API--ai4industry--anomaly-detection-api/#connection_check

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 825184.

THANK YOU!

